1 Dot Product and Cross Products

- For two vectors, the dot product is a number

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=A B \cos (\theta)=A_{\|} B=A B_{\|} \tag{1}
\end{equation*}
$$

- For two vectors \mathbf{A} and \mathbf{B} the cross product $\mathbf{A} \times \mathbf{B}$ is a vector. The magnitude of the cross product

$$
\begin{equation*}
|\mathbf{A} \times \mathbf{B}|=A B \sin (\theta)=A_{\perp} B=A B_{\perp} \tag{2}
\end{equation*}
$$

The direction of the resulting vector is given by the right hand rule.

- A formula for the cross product of two vectors is

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \tag{3}\\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

2 Work and Energy

- The work done by any force in going from position \mathbf{r}_{A} up to position \mathbf{r}_{B} is

$$
\begin{equation*}
W=\int_{\mathbf{r}_{A}}^{\mathbf{r}_{B}} \mathbf{F} \cdot d \mathbf{r} \tag{4}
\end{equation*}
$$

For a constant force the work is simply the dot product of the force with the displacement

$$
\begin{equation*}
W=\mathbf{F} \cdot \Delta \mathbf{r}=F \Delta r \cos (\theta) \tag{5}
\end{equation*}
$$

where θ is the angle between the displacement and the force vector.

- The work done by all forces

$$
\begin{equation*}
W_{\text {all-forces }}=\Delta K=K_{f}-K_{i} \tag{6}
\end{equation*}
$$

where the kinetic energy is

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \tag{7}
\end{equation*}
$$

- We classify forces as conservative (gravity springs) and non-conservative (friction). For conservative forces we can introduce the potential energy. The change in potential energy is minus the work done by the foce

$$
\begin{equation*}
\Delta U=U_{2}-U_{1}=-\int_{1}^{2} \mathbf{F} \cdot d \mathbf{r} \tag{8}
\end{equation*}
$$

- The force associated with a given potential energy is

$$
\begin{equation*}
F=-\frac{d U(x)}{d x} \tag{9}
\end{equation*}
$$

- Then the fundamental work energy theorem can be written

$$
\begin{equation*}
W_{n o n-c o n s v}+W_{\mathrm{ext}}=\Delta K+\Delta U \tag{10}
\end{equation*}
$$

where ΔU is the change in potential energy of the system.

- If there are no external or dissipative forces then

$$
\begin{equation*}
E=K+U=\text { constant } \tag{11}
\end{equation*}
$$

You should understand the logic of how Eq. ?? leads to Eq. ?? and ultimately Eq. ??.

- The potential energy depends on the force that we are considering:
- For a constant gravitational force $F=m g$ we have

$$
\begin{equation*}
U=m g y \tag{12}
\end{equation*}
$$

where y is the vertical height measured from any agreed upon origin.

- For a spring with spring constant k which is displaced from equilibrium by an amount x, we have a potential energy of

$$
\begin{equation*}
U=\frac{1}{2} k x^{2} \tag{13}
\end{equation*}
$$

- For a particle a distance r from the earth the potential energy is

$$
\begin{equation*}
U=-\frac{G M m}{r} \tag{14}
\end{equation*}
$$

- Power is defined as the rate at which work is done or the rate at which energy is transformed from one form to another.

$$
\begin{equation*}
P=\frac{d W}{d t}=\frac{d E}{d t} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\mathbf{F} \cdot \mathbf{v} \tag{16}
\end{equation*}
$$

3 Momentum

- The momentum of an object is

$$
\begin{equation*}
\mathbf{p}=m \mathbf{v} \tag{17}
\end{equation*}
$$

In terms of momentum Newtons Law can

$$
\begin{equation*}
\sum \mathbf{F}=\frac{d \mathbf{p}}{d t} \tag{18}
\end{equation*}
$$

- The total momentum transferred to a particle by a force is the known as the impulse (or simply momentum transfer)

$$
\begin{equation*}
\Delta \mathbf{p}=\mathbf{p}_{f}-\mathbf{p}_{i}=\int_{t_{i}}^{t_{f}} \mathbf{F} d t=\mathbf{J} \tag{19}
\end{equation*}
$$

If the force last a period Δt the average force is

$$
\begin{equation*}
\mathbf{F}_{\mathrm{ave}}=\frac{\Delta \mathbf{p}}{\Delta t} \tag{20}
\end{equation*}
$$

- For a system of particles with total mass M, we define the center of mass

$$
\begin{equation*}
\mathbf{x}_{c m}=\frac{\sum_{i} m_{i} \mathbf{x}_{i}}{M} \tag{21}
\end{equation*}
$$

For a continuous distribution of mass (e.g. a rod)

$$
\begin{equation*}
\mathbf{x}_{\mathrm{cm}}=\frac{1}{M} \int \mathbf{x} d m \tag{22}
\end{equation*}
$$

See Example 9-16 and 9-17 for how to actually do these calculations.

- The total momentum is of a system of particles

$$
\begin{equation*}
\mathbf{P}_{\mathrm{tot}}=\sum m_{i} \mathbf{v}_{i}=M \mathbf{v}_{\mathrm{cm}} \tag{23}
\end{equation*}
$$

It should be clear how to derive this last equality by differentiating Eq. ??

- Newtons laws for a system of particles is

$$
\begin{equation*}
\mathbf{F}_{\mathrm{ext}}=\frac{d \mathbf{P}_{\mathrm{tot}}}{d t}=M \mathbf{a}_{\mathrm{cm}} \tag{24}
\end{equation*}
$$

If the mass is changing e.g. in Rocket problems one should be careful drawing a picture of before and after a time Δt - see l19. You should feel comfortable deriving e.g. Eq. 9-19b of the book. See examples 9-19, 9-20.

- If there are no external forces in a system of particles then (from Eq. ??) momentum is conserved

$$
\begin{equation*}
\mathbf{P}_{\mathrm{tot}}=\text { Constant } \tag{25}
\end{equation*}
$$

i.e. for $2 \rightarrow 2$ collisions

$$
\begin{equation*}
\mathbf{p}_{A}+\mathbf{p}_{B}=\mathbf{p}_{A}^{\prime}+\mathbf{p}_{B}^{\prime} \tag{26}
\end{equation*}
$$

- If a collision is totally elastic (there is no internal disaptive or explosive forces). Energy is conserved

$$
\begin{equation*}
\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A} v_{A}^{\prime 2}+\frac{1}{2} m_{B} v_{B}^{\prime 2} \tag{27}
\end{equation*}
$$

In one dimensional elastic collisons a simplified formula is equivalent to energy conservation

$$
\begin{equation*}
v_{A}-v_{B}=-\left(v_{A}^{\prime}-v_{B}^{\prime}\right) \tag{28}
\end{equation*}
$$

- In an inelastic collision energy is not conserved.

4 Rotational Motion

4.1 Kinematics

- Use radians - most of these formulas assume it.
- The magnitude of the angular velocity and the angular acceleration of a rigid body are

$$
\begin{equation*}
\omega=\frac{d \theta}{d t} \quad \text { and } \quad \alpha=\frac{d \omega}{d t} \tag{29}
\end{equation*}
$$

And these quantities do not depend on the radius (unlike velocity).

- The freqency and period (for ω constant is)

$$
\begin{equation*}
f=\frac{\omega}{2 \pi} \quad T=\frac{1}{f} \tag{30}
\end{equation*}
$$

- The angular velocity $\boldsymbol{\omega}$ and angular acceleration $\boldsymbol{\alpha}$, point along the axis of rotation. The direction is given by the right hand rule.
- The velocity and tangential and radial accelerations are

$$
\begin{align*}
v & =R \omega \tag{31}\\
a_{\tan } & =R \alpha \tag{32}\\
a_{R} & =\frac{v^{2}}{R}=\omega^{2} R \tag{33}
\end{align*}
$$

The total acceleration is a vector sum of thse For an object spinning counter clockwise and speeding up the picture is

- For constant angular acceleration the following formulas are valid (in analogy)

$$
\begin{align*}
\theta & =\theta_{o}+\omega_{o} t+\frac{1}{2} \alpha t^{2} \tag{34}\\
\omega & =\omega_{o}+\alpha t \tag{35}\\
\omega^{2} & =\omega_{o}^{2}+2 \alpha \Delta \theta \tag{36}
\end{align*}
$$

4.2 1D-Dynamics and Energetics

- The torque is

$$
\begin{equation*}
\boldsymbol{\tau}=\mathbf{R} \times \mathbf{F} \tag{37}
\end{equation*}
$$

When limitted to rotation in the xy plane we have

$$
\begin{equation*}
\boldsymbol{\tau}= \pm R_{\perp} F \hat{\boldsymbol{k}}= \pm R F_{\perp} \hat{\boldsymbol{k}} \tag{38}
\end{equation*}
$$

$+\hat{\boldsymbol{k}}$ indicates a a counter-clockwise rotation while $-\hat{\boldsymbol{k}}$ indicates a clockwise rotation. For xy rotations the $\hat{\boldsymbol{k}}$ is usually not written down, but is understood.

- The moment of inertia of a solid body is

$$
\begin{equation*}
I=\sum_{i} m_{i} R_{\perp}^{2} \quad I=\int R_{\perp}^{2} d m \tag{39}
\end{equation*}
$$

To compute the moment of inertia one can:

- Perform the integral.
- Break it up into pieces whose moment of inertial you know
- Look it up (If I want you to look up I will provide a table)
- Use the parallel axis theorem:

$$
\begin{equation*}
I_{A}=I_{c m}+M d^{2} \tag{40}
\end{equation*}
$$

where d is the distance from the desired parallel axis to the center of mass.

- Torques create angular acceleration. For spinning around a natural axis of a body one has

$$
\begin{equation*}
\sum \tau=I \alpha \tag{41}
\end{equation*}
$$

this applies around a fixed axis or around the center of mass if the body is accelerating.

- The rotational kinetic energy is

$$
\begin{equation*}
K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2} \tag{42}
\end{equation*}
$$

- If an object is moving there is rotational kinetic energy around the center of mass and there is translational kinetic energy

$$
\begin{equation*}
K_{\mathrm{tot}}=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega^{2} \tag{43}
\end{equation*}
$$

- When a wheel is rolling is without slipping the point at the bottom of the wheel is instanteously not moving (it has non zero acceleration however). Thus what actually keeps a tire from slipping is the coefficient of static and not kinetic friction. If a an object is rolling without slipping we have

$$
\omega=\frac{v_{\mathrm{cm}}}{R}
$$

Otherwise ω and v_{cm} are separate quantities to be determined by $F_{\mathrm{net}}=M a_{\mathrm{cm}}$ and $\tau=I \frac{d \omega}{d t}$.

4.3 Angular Momentum

- The angular momentum of a rigid body rotating about a principle axis is

$$
\begin{equation*}
\mathbf{L}=I \omega \tag{44}
\end{equation*}
$$

- The angular momentum of a particle is

$$
\begin{equation*}
\mathbf{L}=\mathbf{r} \times \mathbf{p} \quad|\mathbf{L}|=r_{\perp} m v \tag{45}
\end{equation*}
$$

- The total angular momentum of a system is the sum of the angular momenta of its different components. It depends on the axis of rotation For example:

1. Ball rolling - Calculate L_{cm} and L_{O}

$$
L_{O}=\boldsymbol{r} \times M_{\mathrm{tot}} \boldsymbol{v}_{\mathrm{cm}}+I_{\mathrm{cm}} \omega
$$

2. Rod just moving to right with speed v. Calculate L_{cm} and L_{O}

- The net external torque on a system (about a fixed axis or about the center of mass if the object is accelerating) determines the rate of change in angular momenta

$$
\begin{equation*}
\sum \tau_{\mathrm{ext}}=\frac{d \mathbf{L}_{\mathrm{tot}}}{d t} \tag{46}
\end{equation*}
$$

- If there is no net external torque then the total angular momentum is conserved

$$
\begin{equation*}
\mathbf{L}_{\text {init }}=\mathbf{L}_{\text {final }} \tag{47}
\end{equation*}
$$

5 Oscillations

- We derived several examples of small oscillations
- For a mass connected to a spring the equation of motion become

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\frac{k}{M} x \tag{48}
\end{equation*}
$$

You should know how to derive this using $F=M a$.

- Similarly we showed (using $\sin (\theta) \approx \theta$ for small angles) that for a small blob connected to a string of length l, The equation of motion is

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \theta \tag{49}
\end{equation*}
$$

You should know how to derive this from $F=m a$

- Finally we showed (using $\sin (\theta) \approx \theta$ for small angles) that for a solid pendulum of moment of inertia I, pivoted a distance h above the center of mass the angle obeys

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=-\frac{m g h}{I} \theta \tag{50}
\end{equation*}
$$

You should know how to derive this from $\tau=I \alpha$. Or memorize the period, etc if you must.

- The generic formula is

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}=-\omega_{o}^{2} u \tag{51}
\end{equation*}
$$

where u is the thing thats ocillating and ω_{o} is the angular oscillation frequency.

- The preceding equations are all the same with the subsitutions (e.g. $x \rightarrow \theta$ and $k / M \rightarrow g / \ell$). We will take the spring for simplicity but these remarks to apply to the other cases as well. The spring is released from position x_{0} with velocity v_{0} at time $t=0$. The free constants in the general solution $x(t)=C_{1} \cos \left(\omega_{o} t\right)+C_{2} \sin \left(\omega_{o} t\right)$ are adjusted so that $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$. You should be able to show that in this case $C_{1}=x_{o}$ and $C_{2}=v_{o} / \omega_{o}$

$$
\begin{equation*}
x(t)=x_{0} \cos (\omega t)+\frac{v_{0}}{\omega_{o}} \sin \left(\omega_{o} t\right) \quad \omega_{o}=\sqrt{\frac{k}{M}} \tag{52}
\end{equation*}
$$

- It often instructive to write this in amplitude + phase form. We showed in class that Eq. ?? can be rewritten (you should be able to show this)

$$
\begin{equation*}
x(t)=A \cos (\omega t-\phi) \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\sqrt{x_{o}^{2}+\left(v_{o} / \omega_{o}\right)^{2}} \quad \text { and } \quad \phi=\tan ^{-1}\left(\frac{v_{o}}{\omega_{o} x_{o}}\right) \tag{54}
\end{equation*}
$$

- The frequency and period of the oscillation are

$$
\begin{equation*}
f=\frac{\omega_{o}}{2 \pi} \quad T=\frac{1}{f} \tag{55}
\end{equation*}
$$

- Analgous formulas hold for the other cases. For example for a simple pendulum released from and initial angle θ_{o} with iniitial angular velocity $\Omega_{o}=\dot{\theta}(0)$ the analgous formulas are

$$
\begin{equation*}
\theta(t)=\theta_{o} \cos \left(\omega_{o} t\right)+\frac{\Omega_{o}}{\omega_{o}} \sin \left(\omega_{o} t\right) \quad \omega_{o}=\sqrt{\frac{g}{l}} \tag{56}
\end{equation*}
$$

- During simple harmonic motion, the energy of a spring changes between kinetic and potential energies. The total energy is constant

$$
\begin{equation*}
E=\frac{1}{2} M v^{2}+\frac{1}{2} k x^{2} \tag{57}
\end{equation*}
$$

- For a harmonic oscillator with non-zero damping force $F_{D}=-b v$ you should be able to derive the following equation of motion

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{b}{M} \frac{d x}{d t}+\frac{k}{M} x=0 \tag{58}
\end{equation*}
$$

which has a general solution

$$
\begin{equation*}
x(t)=A e^{-\frac{b}{2 m} t} \cos (\omega t-\phi) \quad \text { where } \quad \omega=\sqrt{\frac{k}{M}-\frac{b^{2}}{4 m^{2}}} \tag{59}
\end{equation*}
$$

The constants A and ϕ are as usual adjusted to reproduce the initial conditions. We will keep the discussion fairly elementary, at the level of Example 14-11 of the book.

- For a vertical spring, when mass is added, the equilbirium point is shifted downward (derive):

$$
\begin{equation*}
x_{\mathrm{eq}}=-\frac{m g}{k} \tag{60}
\end{equation*}
$$

If we measure the deviation from this equilibrium point

$$
\begin{equation*}
y=x-x_{\mathrm{eq}} \tag{61}
\end{equation*}
$$

we have the classic equation of motion (show)

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}=-\frac{k}{M} y \tag{62}
\end{equation*}
$$

The potential energy measures both the gravitational potential energy and the spring potential energy (show):

$$
\begin{equation*}
U=\frac{1}{2} k y^{2}=\frac{1}{2} k x^{2}+m g x+\text { constant } \tag{63}
\end{equation*}
$$

6 Gravitation

- The universal law of gravitational attraction is a force attracting mass M with mass m.

$$
\begin{equation*}
F=\frac{G M m}{r^{2}} \tag{64}
\end{equation*}
$$

The direction of this force is along the line joining the two particles and is always attractvie.

- You should be able to show that

$$
\begin{equation*}
g=\frac{G M_{E}}{R_{E}^{2}} \tag{65}
\end{equation*}
$$

- You should be able to compute the properties of circular orbits in this kind of force field, e.g. The kinetic energy for an orbit of radius R.
- You should be able to compute the escape velocity from the earth etc.

7 Statics-Section 12-1, Section 12-2

- For static equilibrium one has only equation

$$
\begin{equation*}
\sum \mathbf{F}_{i}=0 \quad \sum \tau=0 \tag{66}
\end{equation*}
$$

This when carefully applied is all you need.

