
1 Dot Product and Cross Products

• For two vectors, the dot product is a number

A ·B = AB cos(θ) = A‖B = AB‖ (1)

• For two vectors A and B the cross product A×B is a vector. The magnitude of the cross product

|A×B| = AB sin(θ) = A⊥B = AB⊥ (2)

The direction of the resulting vector is given by the right hand rule.

• A formula for the cross product of two vectors is

A×B =

∣∣∣∣∣∣
ı̂ ̂ k̂
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (3)

2 Work and Energy

• The work done by any force in going from position rA up to position rB is

W =
∫ rB

rA

F · dr (4)

For a constant force the work is simply the dot product of the force with the displacement

W = F ·∆r = F∆r cos(θ) (5)

where θ is the angle between the displacement and the force vector.

• The work done by all forces
Wall−forces = ∆K = Kf −Ki (6)

where the kinetic energy is

K =
1
2
mv2 (7)

• We classify forces as conservative (gravity springs) and non-conservative (friction). For conservative
forces we can introduce the potential energy. The change in potential energy is minus the work done
by the foce

∆U = U2 − U1 = −
∫ 2

1

F · dr (8)

• The force associated with a given potential energy is

F = −dU(x)
dx

(9)

• Then the fundamental work energy theorem can be written

Wnon−consv +Wext = ∆K + ∆U (10)

where ∆U is the change in potential energy of the system.

• If there are no external or dissipative forces then

E = K + U = constant (11)

You should understand the logic of how Eq. ?? leads to Eq. ?? and ultimately Eq. ??.
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• The potential energy depends on the force that we are considering:

– For a constant gravitational force F = mg we have

U = mgy (12)

where y is the vertical height measured from any agreed upon origin.

– For a spring with spring constant k which is displaced from equilibrium by an amount x, we have
a potential energy of

U =
1
2
kx2 (13)

– For a particle a distance r from the earth the potential energy is

U = −GMm

r
(14)

• Power is defined as the rate at which work is done or the rate at which energy is transformed from one
form to another.

P =
dW

dt
=
dE

dt
(15)

or
P = F · v (16)

3 Momentum

• The momentum of an object is
p = mv (17)

In terms of momentum Newtons Law can ∑
F =

dp
dt

(18)

• The total momentum transferred to a particle by a force is the known as the impulse (or simply
momentum transfer)

∆p = pf − pi =
∫ tf

ti

Fdt = J (19)

If the force last a period ∆t the average force is

Fave =
∆p
∆t

(20)

• For a system of particles with total mass M, we define the center of mass

xcm =
∑

imixi

M
(21)

For a continuous distribution of mass (e.g. a rod )

xcm =
1
M

∫
x dm (22)

See Example 9-16 and 9-17 for how to actually do these calculations.

• The total momentum is of a system of particles

Ptot =
∑

mivi = Mvcm (23)

It should be clear how to derive this last equality by differentiating Eq. ??
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• Newtons laws for a system of particles is

Fext =
dPtot

dt
= Macm (24)

If the mass is changing e.g. in Rocket problems one should be careful drawing a picture of before
and after a time ∆t – see l19. You should feel comfortable deriving e.g. Eq. 9-19b of the book. See
examples 9-19, 9-20.

• If there are no external forces in a system of particles then (from Eq. ??) momentum is conserved

Ptot = Constant (25)

i.e. for 2→ 2 collisions
pA + pB = p′A + p′B (26)

• If a collision is totally elastic (there is no internal disaptive or explosive forces). Energy is conserved

1
2
mAv

2
A +

1
2
mBv

2
B =

1
2
mAv

′2
A +

1
2
mBv

′2
B (27)

In one dimensional elastic collisons a simplified formula is equivalent to energy conservation

vA − vB = −(v′A − v′B) (28)

• In an inelastic collision energy is not conserved.

4 Rotational Motion

4.1 Kinematics

• Use radians – most of these formulas assume it.

• The magnitude of the angular velocity and the angular acceleration of a rigid body are

ω =
dθ

dt
and α =

dω

dt
(29)

And these quantities do not depend on the radius (unlike velocity).

• The freqency and period (for ω constant is )

f =
ω

2π
T =

1
f

(30)

• The angular velocity ω and angular acceleration α, point along the axis of rotation. The direction is
given by the right hand rule.

• The velocity and tangential and radial accelerations are

v = Rω (31)
atan = Rα (32)

aR =
v2

R
= ω2R (33)

The total acceleration is a vector sum of thse For an object spinning counter clockwise and speeding
up the picture is
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atan

aR

v

• For constant angular acceleration the following formulas are valid (in analogy)

θ = θo + ωot+
1
2
αt2 (34)

ω = ωo + αt (35)
ω2 = ω2

o + 2α∆θ (36)

4.2 1D-Dynamics and Energetics

• The torque is
τ = R× F (37)

When limitted to rotation in the xy plane we have

τ = ±R⊥F k̂ = ±RF⊥ k̂ (38)

+k̂ indicates a a counter-clockwise rotation while −k̂ indicates a clockwise rotation. For xy rotations
the k̂ is usually not written down, but is understood.

• The moment of inertia of a solid body is

I =
∑

i

miR
2
⊥ I =

∫
R2
⊥dm (39)

To compute the moment of inertia one can:

– Perform the integral.

– Break it up into pieces whose moment of inertial you know

– Look it up (If I want you to look up I will provide a table)

– Use the parallel axis theorem:
IA = Icm +Md2 (40)

where d is the distance from the desired parallel axis to the center of mass.

• Torques create angular acceleration. For spinning around a natural axis of a body one has∑
τ = Iα (41)

this applies around a fixed axis or around the center of mass if the body is accelerating.

• The rotational kinetic energy is

Krot =
1
2
Iω2 (42)

• If an object is moving there is rotational kinetic energy around the center of mass and there is trans-
lational kinetic energy

Ktot =
1
2
Mv2

cm +
1
2
Icmω

2 (43)
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• When a wheel is rolling is without slipping the point at the bottom of the wheel is instanteously not
moving (it has non zero acceleration however). Thus what actually keeps a tire from slipping is the
coefficient of static and not kinetic friction. If a an object is rolling without slipping we have

ω =
vcm

R

Otherwise ω and vcm are separate quantities to be determined by Fnet = Macm and τ = I dω
dt .

4.3 Angular Momentum

• The angular momentum of a rigid body rotating about a principle axis is

L = Iω (44)

• The angular momentum of a particle is

L = r× p |L| = r⊥mv (45)

• The total angular momentum of a system is the sum of the angular momenta of its different components.
It depends on the axis of rotation For example:

1. Ball rolling – Calculate Lcm and LO

vcm

O

LO = r ×Mtotvcm + Icmω

Lcm = Icmω

r

2. Rod just moving to right with speed v. Calculate Lcm and LO

LO = r ×mvcm |LO| = R⊥mvcm

Lcm = 0

R⊥

r

v

O

• The net external torque on a system (about a fixed axis or about the center of mass if the object is
accelerating) determines the rate of change in angular momenta∑

τext =
dLtot

dt
(46)
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• If there is no net external torque then the total angular momentum is conserved

Linit = Lfinal (47)

5 Oscillations

• We derived several examples of small oscillations

– For a mass connected to a spring the equation of motion become

d2x

dt2
= − k

M
x (48)

You should know how to derive this using F = Ma.
– Similarly we showed (using sin(θ) ≈ θ for small angles) that for a small blob connected to a string

of length l, The equation of motion is
d2θ

dt2
= −g

l
θ (49)

You should know how to derive this from F = ma

– Finally we showed (using sin(θ) ≈ θ for small angles) that for a solid pendulum of moment of
inertia I, pivoted a distance h above the center of mass the angle obeys

d2θ

dt2
= −mgh

I
θ (50)

You should know how to derive this from τ = Iα. Or memorize the period, etc if you must.
– The generic formula is

d2u

dt2
= −ω2

ou (51)

where u is the thing thats ocillating and ωo is the angular oscillation frequency.

• The preceding equations are all the same with the subsitutions (e.g. x → θ and k/M → g/`). We
will take the spring for simplicity but these remarks to apply to the other cases as well. The spring
is released from position x0 with velocity v0 at time t = 0. The free constants in the general solution
x(t) = C1 cos(ωot) + C2 sin(ωot) are adjusted so that x(0) = x0 and ẋ(0) = v0. You should be able to
show that in this case C1 = xo and C2 = vo/ωo

x(t) = x0 cos(ωt) +
v0

ωo
sin(ωot) ωo =

√
k

M
(52)

• It often instructive to write this in amplitude + phase form. We showed in class that Eq. ?? can be
rewritten (you should be able to show this)

x(t) = A cos(ωt− φ) (53)

where

A =
√
x2

o + (vo/ωo)2 and φ = tan−1

(
vo

ωoxo

)
(54)

• The frequency and period of the oscillation are

f =
ωo

2π
T =

1
f

(55)

• Analgous formulas hold for the other cases. For example for a simple pendulum released from and
initial angle θo with iniitial angular velocity Ωo = θ̇(0) the analgous formulas are

θ(t) = θo cos(ωot) +
Ωo

ωo
sin(ωot) ωo =

√
g

l
(56)
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• During simple harmonic motion, the energy of a spring changes between kinetic and potential energies.
The total energy is constant

E =
1
2
Mv2 +

1
2
kx2 (57)

• For a harmonic oscillator with non-zero damping force FD = −bv you should be able to derive the
following equation of motion

d2x

dt2
+

b

M

dx

dt
+

k

M
x = 0 (58)

which has a general solution

x(t) = Ae−
b

2m t cos(ωt− φ) where ω =

√
k

M
− b2

4m2
(59)

The constants A and φ are as usual adjusted to reproduce the initial conditions. We will keep the
discussion fairly elementary, at the level of Example 14-11 of the book.

• For a vertical spring, when mass is added, the equilbirium point is shifted downward (derive):

xeq = −mg
k

(60)

If we measure the deviation from this equilibrium point

y = x− xeq (61)

we have the classic equation of motion (show)

d2y

dt2
= − k

M
y (62)

The potential energy measures both the gravitational potential energy and the spring potential energy
(show):

U =
1
2
ky2 =

1
2
kx2 +mgx+ constant (63)

6 Gravitation

• The universal law of gravitational attraction is a force attracting mass M with mass m.

F =
GMm

r2
(64)

The direction of this force is along the line joining the two particles and is always attractvie.

• You should be able to show that
g =

GME

R2
E

(65)

• You should be able to compute the properties of circular orbits in this kind of force field, e.g. The
kinetic energy for an orbit of radius R.

• You should be able to compute the escape velocity from the earth etc.

7 Statics–Section 12-1, Section 12-2

• For static equilibrium one has only equation∑
Fi = 0

∑
τ = 0 (66)

This when carefully applied is all you need.
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