Dot Product and Cross Products

e For two vectors, the dot product is a number

A -B=AB COS(@) = AHB = ABH

(1)

e For two vectors A and B the cross product A x B is a vector. The magnitude of the cross product

|A X B‘ ZABSIH(G) ZALBZABL
The direction of the resulting vector is given by the right hand rule.

e A formula for the cross product of two vectors is

Work and Energy

e The work done by any force in going from position r4 up to position rp is

rp
W:/ F . dr
ra

For a constant force the work is simply the dot product of the force with the displacement
W =F - Ar = FAr cos(0)
where 6 is the angle between the displacement and the force vector.

e The work done by all forces
Wall—forces = AK = Kf - K;

where the kinetic energy is

1
K = —muv?
2

(2)

(7)

e We classify forces as conservative (gravity springs) and non-conservative (friction). For conservative
forces we can introduce the potential energy. The change in potential energy is minus the work done

by the foce
2
AU=U2—U1:—/ F-dr
1

e The force associated with a given potential energy is

_dU(z)

F =
dx

e Then the fundamental work energy theorem can be written
Wnonfconsv + Wext =AK + AU
where AU is the change in potential energy of the system.

e If there are no external or dissipative forces then
E = K + U = constant

You should understand the logic of how Eq. 7?7 leads to Eq. 7?7 and ultimately Eq. ?77.

(8)

(10)

(11)



e The potential energy depends on the force that we are considering:

— For a constant gravitational force F' = mg we have
U =mgy (12)

where y is the vertical height measured from any agreed upon origin.

— For a spring with spring constant k& which is displaced from equilibrium by an amount x, we have
a potential energy of

1
U= ikxz (13)
— For a particle a distance r from the earth the potential energy is

_GMm
r

U:

(14)

e Power is defined as the rate at which work is done or the rate at which energy is transformed from one
form to another.

aw  dE
dt dt (15)
or
P=F v (16)
Momentum
e The momentum of an object is
p=mv (17)

In terms of momentum Newtons Law can
dp
F== 18
Y F= (18)

e The total momentum transferred to a particle by a force is the known as the impulse (or simply
momentum transfer)

tf
Ap:pf—pi:/ Fdt=1J (19)
t;
If the force last a period At the average force is
Ap
Fave = AL 20
A7 (20)

e For a system of particles with total mass M, we define the center of mass

;X
Xem = ZZT (21)

For a continuous distribution of mass (e.g. a rod )

Xem = % /xdm (22)

See Example 9-16 and 9-17 for how to actually do these calculations.

e The total momentum is of a system of particles

P = Zmin‘ = MvVen (23)

It should be clear how to derive this last equality by differentiating Eq. 7?7



Newtons laws for a system of particles is

Fext - - Macm (24)

If the mass is changing e.g. in Rocket problems one should be careful drawing a picture of before
and after a time At — see 119. You should feel comfortable deriving e.g. Eq. 9-19b of the book. See
examples 9-19, 9-20.

If there are no external forces in a system of particles then (from Eq. ??) momentum is conserved
Pt = Constant (25)

i.e. for 2 — 2 collisions
PA+P5 =Py +Pj (26)

If a collision is totally elastic (there is no internal disaptive or explosive forces). Energy is conserved

1

Qvag (27)

—mavi + 1va2 = 1mAv'2 +
2 ATAT g ETE T AT
In one dimensional elastic collisons a simplified formula is equivalent to energy conservation

va—vp = (v — vp) (28)

In an inelastic collision energy is not conserved.

4 Rotational Motion

4.1

Kinematics

Use radians — most of these formulas assume it.

The magnitude of the angular velocity and the angular acceleration of a rigid body are

do dw
= — = — 2
W= and a=— (29)
And these quantities do not depend on the radius (unlike velocity).
The freqency and period (for w constant is )
w 1
= — T=- 30
= (30)

The angular velocity w and angular acceleration o, point along the axis of rotation. The direction is
given by the right hand rule.

The velocity and tangential and radial accelerations are

v = Rw (31)

Gtan = Ro (32)
v? 9

ap = =W R (33)

The total acceleration is a vector sum of thse For an object spinning counter clockwise and speeding
up the picture is



e For constant angular acceleration the following formulas are valid (in analogy)

1
0 = 0,+w,t+ 504152
W = w,+tat
w? = W2+ 2aA0
4.2 1D-Dynamics and Energetics
e The torque is
T=RxF

When limitted to rotation in the xy plane we have

r=+R, Fk=+RF k

(37)

(38)

+k indicates a a counter-clockwise rotation while —k indicates a clockwise rotation. For Xy rotations

the k is usually not written down, but is understood.

e The moment of inertia of a solid body is
1= mR, I= /R’jdm

To compute the moment of inertia one can:

— Perform the integral.

Break it up into pieces whose moment of inertial you know

Look it up (If I want you to look up I will provide a table)

— Use the parallel axis theorem:
I = Iop + Md?

where d is the distance from the desired parallel axis to the center of mass.

e Torques create angular acceleration. For spinning around a natural axis of a body one has

ZT:IQ

this applies around a fixed axis or around the center of mass if the body is accelerating.

e The rotational kinetic energy is

1
Kr()t = 5]&]2

(39)

(40)

(41)

(42)

e If an object is moving there is rotational kinetic energy around the center of mass and there is trans-

lational kinetic energy

1 1
Kios = infm + §Icmw2

(43)



e When a wheel is rolling is without slipping the point at the bottom of the wheel is instanteously not
moving (it has non zero acceleration however). Thus what actually keeps a tire from slipping is the
coefficient of static and not kinetic friction. If a an object is rolling without slipping we have

Vem

R

Otherwise w and v¢y, are separate quantities to be determined by Fhet = Maem and 7 =1 Cfi—‘;’.

w =

4.8 Angular Momentum
e The angular momentum of a rigid body rotating about a principle axis is
L=Jw (44)
e The angular momentum of a particle is
L=rxp |L| = ryomo (45)

e The total angular momentum of a system is the sum of the angular momenta of its different components.
It depends on the axis of rotation For example:

1. Ball rolling — Calculate Ly, and Lo

Lcm =1 cmW

LO =7rX Mtotvcm + Icmw

2. Rod just moving to right with speed v. Calculate L.y, and Lo

LO =7 X MUem ‘L()l = Rjjnvcm

O —

R

TF

Ly =0

e The net external torque on a system (about a fixed axis or about the center of mass if the object is
accelerating) determines the rate of change in angular momenta

dLy,
Z Text = d; ’ (46)




e If there is no net external torque then the total angular momentum is conserved

Linit = Lﬁnal (47)

5 Oscillations

e We derived several examples of small oscillations

— For a mass connected to a spring the equation of motion become

d*z k
e =M “8)

You should know how to derive this using F' = Ma.

Similarly we showed (using sin(#) ~ 6 for small angles) that for a small blob connected to a string
of length I, The equation of motion is
0 _ 9, (49)
ez 1

You should know how to derive this from F = ma

Finally we showed (using sin(f) ~ 6 for small angles) that for a solid pendulum of moment of
inertia I, pivoted a distance h above the center of mass the angle obeys

d?o mgh
o —TO (50)
You should know how to derive this from 7 = Ia. Or memorize the period, etc if you must.
— The generic formula is
d*u 9
gz = wou (51)

where u is the thing thats ocillating and w, is the angular oscillation frequency.

e The preceding equations are all the same with the subsitutions (e.g.  — 6 and k/M — g/¢). We
will take the spring for simplicity but these remarks to apply to the other cases as well. The spring
is released from position zg with velocity vy at time t = 0. The free constants in the general solution
x(t) = C1 cos(wot) + Ca sin(w,t) are adjusted so that x(0) = zp and ©(0) = vg. You should be able to
show that in this case C; = z, and Cy = v,/w,

Vo .
x(t) = o cos(wt) + ;2 sin(w,t) Wo =\ 3/ (52)

e It often instructive to write this in amplitude + phase form. We showed in class that Eq. ?? can be
rewritten (you should be able to show this)

x(t) = Acos(wt — @) (53)

where

A= /22 + (voJwo)?  and ¢=tan_1< Yo ) (54)

WoTo

e The frequency and period of the oscillation are

f=22 7=

27 (5)

1

f

e Analgous formulas hold for the other cases. For example for a simple pendulum released from and
initial angle 6, with iniitial angular velocity €, = 6(0) the analgous formulas are

0(t) = 6, cos(w,t) + 2 sin(wot) Wo = % (56)
Wo



e During simple harmonic motion, the energy of a spring changes between kinetic and potential energies.
The total energy is constant

1 1
E= §Mv2 + §k:x2 (57)
e For a harmonic oscillator with non-zero damping force Fp = —bv you should be able to derive the

following equation of motion

d?z b dx k

which has a general solution

b k b2
= “2m t — = _— —
x(t) = Ae cos(wt — @) where  w U T2 (59)

The constants A and ¢ are as usual adjusted to reproduce the initial conditions. We will keep the
discussion fairly elementary, at the level of Example 14-11 of the book.

e For a vertical spring, when mass is added, the equilbirium point is shifted downward (derive):

mg

Teq = —? (60)
If we measure the deviation from this equilibrium point

Y =T — Teq (61)
we have the classic equation of motion (show)

d?y k

ZJ_ 2

atz ~ Y (62)

The potential energy measures both the gravitational potential energy and the spring potential energy
(show):

1 1
U= iky2 = 5/4;3:2 + mgx + constant (63)
Gravitation

e The universal law of gravitational attraction is a force attracting mass M with mass m.

_ GMm

F 2 (64)
The direction of this force is along the line joining the two particles and is always attractvie.
e You should be able to show that M,
-z (65)

e You should be able to compute the properties of circular orbits in this kind of force field, e.g. The
kinetic energy for an orbit of radius R.

e You should be able to compute the escape velocity from the earth etc.

Statics—Section 12-1, Section 12-2

e For static equilibrium one has only equation

> Fi=0 > 7=0 (66)

This when carefully applied is all you need.



