Moment of Inertia of a Cyclinder

Hoop or cylindrical shell $I_{c}=M R^{2}$

Average radius squared is R^{2}

Moment of Inertia of a Solid Cyclinder

Solid cylinder or disk
 $I_{c}=\frac{1}{2} M R^{2}$

Average radius squared is $\left\langle r^{2}\right\rangle<R^{2}$

Table from Book

Hoop or
cylindrical shell $I_{c}=M R^{2}$

Long thin rod
$I_{c}=\frac{1}{12} M L^{2}$

Long thin rod $I=\frac{1}{3} M L^{2}$

Solid sphere
$I_{c}=\frac{2}{5} M R^{2}$

Thin spherical shell
$I_{c}=\frac{2}{3} M R^{2}$

