Name: Donald Henken
Rec Section: 02
Date: 10/22/09

Recitation Problem October 22, 2009

A mass m is dropped from a height h onto a platform resting on top of a spring at equilibrium. We say that t_{o} is when the mass comes into first contact with the platform. After a change in time (t) of 0.148 s the platform passes the new equilibrium point a distance (d) of 19.6 cm from its initial position at t_{o}. Find a function for the position y as a function of time, the height (h) it was released from above the platform, and its intitial velocity $\left(v_{o}\right)$ at time t_{o}.

$$
\begin{gather*}
m g-k x=m \frac{d^{2} x}{d t^{2}} \tag{1}\\
x=\frac{m g}{k}+y \tag{2}
\end{gather*}
$$

Plugging equation (2) into equation (1) we get:

$$
\begin{equation*}
m g-k\left(\frac{m g}{k}+y\right)=m \frac{d^{2} x}{d t^{2}} \tag{3}
\end{equation*}
$$

After some more work we come up with a equation for the position as a function of time:

$$
\begin{equation*}
y(t)=y_{o} \cos \left(w_{o} t\right)+\frac{v_{o}}{w_{o}} \sin \left(w_{o} t\right) \tag{4}
\end{equation*}
$$

Some things to keep in mind:

$$
\begin{gather*}
y_{o}=d \tag{5}\\
w_{o}=\sqrt{\frac{k}{m}} \tag{6}\\
k=\frac{m a}{d} \tag{7}\\
v_{o}=\sqrt{2 g h} \tag{8}\\
y(t)=y(0.148 s)=0 \tag{9}\\
y\left(t_{o}\right)=y(0)=19.6 \mathrm{~cm}=0.196 m \tag{10}
\end{gather*}
$$

Working with these equations we can get a value for w_{o}

$$
w_{o}=\sqrt{\frac{m g}{d m}}=\sqrt{\frac{g}{d}}=\sqrt{\frac{9.8 m / s^{2}}{0.196 m}}=\sqrt{50} s^{-1}
$$

Solving equation (4) for v_{o} we get

$$
v_{o}=-\frac{d w_{o} \cos \left(w_{o} t\right)}{\sin \left(w_{o} t\right)}
$$

Plugging in our values for w_{o}, t, and d we get

$$
\begin{gathered}
v_{o}=-\frac{(0.196 m)\left(\sqrt{50} s^{-1}\right) \cos \left(\sqrt{50} s^{-1}\right)(0.148 s)}{\sin \left(\sqrt{50} s^{-1}\right)(0.148 s)}=-\frac{0.69378 \mathrm{~m} / \mathrm{s}}{0.86569} \\
v_{o}=-0.80142 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Using equation (8) we can solve for h and get

$$
\begin{gathered}
h=\frac{v_{o}^{2}}{2 g}=\frac{(-0.80142 m / s)^{2}}{2\left(9.8 m / s^{2}\right)} \\
h=0.032769 m
\end{gathered}
$$

