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1 Damped Oscillator

The equation of motion is
Mẍ+ bẋ+ kx = 0 . (1)

We showed in class (see Appendix. A) that the general solution to these equations is

x(t) = Aoe
− b

2m
t cos(ωt− φ) , (2)

where

ω =

√
ω2

o −
b2

4M2
, with ωo =

√
k

M
. (3)

The amplitude Ao and the phase φ should be adjusted to adjusted to reproduce the initial
position and the initial velocity. Clearly something happens when b

2M
becomes larger than

ωo we will discuss this later in Sect. 4.2. The analytic solution presented here is no longer
valid for b/2M > ωo

Example:

• Suppose at some time t = 0, we start the block displaced from equilibrium by a distance
xo but with no initial velocity. From the solution to the damped oscillator

xo = x(0) = Ao cos(−φ) = Ao cos(φ) . (4)

To determine the initial velocity we differentiate x(t)

v(t) = ẋ(t) = Aoe
− b

2m
t

[
− b

2m
cos(ωt− φ)− ω sin(ωt− φ)

]
, (5)

Then since the initial velocity is zero we have,

vo = v(0) = 0 = Ao

[
− b

2m
cos(φ) + ω sin(φ)

]
. (6)

Solving these equations for A and φ we have

tanφ =
b

2Mω
, and Ao =

xo

cosφ
. (7)

The complete solution in this case is

x(t) = xo e
− b

2M
t cos(ωt− φ)

cosφ
. (8)
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Sect. 4.2 will compare this solution to a numerical treatment of the differential equation
Eq. 1.

2 Dimensional Analysis of a Damped Oscillator

Much about what happens as a function time can be determined from a dimensional analysis
of the damped oscillator. We will concentrate on the example problem given above, and show
how you can almost guess the form of the solution in Eq. 8

The dimensional constants in the initial state are

[M ] = kg [k] =
N

m
=
kg

s2
[b] =

N

m/s
=
kg

s
[x0] = m (9)

We now wish to write down the functional form of the position as a function of time.
Since the position has units of meters it must be proportional to a constant of dimension
meters. An available constant (the only actually) is xo. Then it could be a function of the
dimensionless variables which can be formed out of the constants given above and time t. A
complete set of dimensionless variables is

ωo t and
b

Mωo

with ωo =

√
k

M
(10)

So the

x(t) = xo F

(
ωot,

b

Mωo

)
(11)

where F is some function to be determined either numerically or analytically. As remarked
in class (not by me) there are other parameters which are dimensionless. However these
dimensionless parameters can be written as a combination of the complete set dimensionless
parameters given above. For example

k

b
t =

k/M

b/M
t =

√
k/M

b/M

√
k/M t =

Mωo

b
ωot (12)

Thus any function of (k/b) t is also a function of the dimensionless variables given above in
Eq. 10.

Physically b/Mωo is the ratio between the damping rate b/M , and the oscillation fre-
quency, ωo =

√
k/M . If the damping is small (b small), the damping rate is small we

then
b

Mωo

� 1 . (13)

This (dimensionless!) criterion is what we really mean by saying the damping is small.

3 Dimensionless variables

There is a another way to arrive at Eq. 11 which is useful for numerical work. We may choose
to measure mass in units of M ; We can measure distances in xo, and measure seconds in
units of 1/ωo. All other units can be derived from these quantities.
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We will put a bar to denote a variable in this particular set of units. For example, since
b has units [kg/s]. In our system of units we measure [kg/s] in Mωo. So we define b̄ as b
divided by Mωo (i.e. b̄ is b in units of Mωo)

b̄ =
b

Mωo

. (14)

The mass in units of M is simply, M̄ = M/M = 1. More generally

M̄ = 1 k̄ = 1 x̄o = 1 t̄ = ωot b̄ =
b

Mωo

, x̄ =
x

xo

. (15)

Other quantities can be expressed in these units. For instance the total energy has units of
[kg m2/s2], which in our units would be expressed with Mx2

oω
2
o = kx2

o. Thus the energy in
our system of units is

Ē =
E

kx2
o

. (16)

The velocity is

v̄ =
v

ωoxo

. (17)

Since the equation of motion is independent of what units you use we must have

M̄
d2x̄

dt̄2
+ b̄

dx̄

dt̄
+ k̄x̄ = 0 , with x̄(t̄ = 0) = x̄o . (18)

Or substituting M̄ = k̄ = x̄o = 1

d2x̄

dt̄2
+ b̄

dx̄

dt̄
+ x̄ = 0 with x̄(t̄ = 0) = 1 . (19)

Now we can solve this equation for x̄

x̄(t̄) = F (t̄, b̄) . (20)

After unraveling the definitions we conclude

x = xoF (ωot,
b

Mωo

) . (21)

We will solve Eq. 19 on the computer to determine this unknown function.
If you don’t believe this units “trick” you can simply take the original equation

Mẍ+ bẋ+ kx = 0 , (22)

which has dimension [kg m/s2], and divide by the Mxoω
2
o which has units of [kgm/s2] in our

system of units
1

Mxoω2
o

[Mẍ+ bẋ+ kx] = 0 . (23)

Look at the first term in this expression

1

Mxoω2
o

M
d2x

dt2
=
d2x̄

dt̄2
,

which is the first term in in Eq. 18 and Eq. 19. The other terms follow similarly, and the
result is Eq. 18 and Eq. 19.
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4 Numerical Scheme

We will solve Eq. 19 numerically for x̄ for various values of b̄ = b/Mωo The first step is to
rewrite Eq. 18 as two first order equations. Defining v̄ = dx̄/dt̄ we have

dx̄

dt̄
= v̄

dv̄

dt̄
=

F̄

M̄

where
F̄ = −k̄x̄− b̄v (24)

Since M̄ = x̄o = k̄ = 1, this system of equation has one free parameter b̄.
The basic rule is the following: Given the position at velocity (xn, vn) at a time tn = n∆t,

we can find the position and velocity (x̄n+1, v̄n+1) at time t̄n+1 = t̄n + ∆t, with the following
step

x̄n+1 = x̄n + v̄n∆t

v̄n+1 = v̄n +

(
F̄

M̄

)
n

∆t

We should choose the time step to be smaller than all time scales. This means, we should
take

ωo∆t� 1 , and
b

M
∆t� 1 . (25)

In dimensionless variables we have

∆t̄� 1 , and b̄∆t̄� 1 . (26)

A matlab program to use this update rule to solve for x̄ and v̄ as a function of t̄ is
included at the end of this note and you should study it and understand how it works.

4.1 Results for zero damping

First we will take b̄ = 0. Then using the matlab program, we integrate from t̄ = 0 . . . 10
with a time step of ωo∆t = 0.003. Figure 1 shows the position versus time. For comparison
we also show the analytic answer which is simply

x

xo

= cos(ωot) .

To test how well energy is conserved by our numerical procedure we show, the kinetic,
potential, and total energies as a function of time in the appropriate unites. Figure 2 shows
how well energy is conserved Energy appears nicely conserved in this approximation scheme.

To estimate the period we ask the program to print out the time whenever the velocity
crosses zero. Note that when the velocity crosses zero x̄(t̄) reaches a maximum or minimum.
The program works by storing the last velocity (vnold) and the current velocity (vn) and
comparing the sign of these two values with a simple set of statements
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Figure 1: The position as a function of time for a harmonic oscillator without damping. The
dashed curve shows the analytic result.
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Figure 2: The kinetic energy, potential, and total energies as a function of time
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Figure 3: Damped harmonic oscillator for modest damping b/Mωo = 0.25. The numerical
result is compared to the analytic result for of Eq. 8.

if vn * vnold < 0.

% print out the result for the time

vn

end

From running the program, we get a period of

τosc = 6.285ω−1
o (27)

which should be compared with the exact answer

τosc =
2π

ωo

≈ 6.283185ω−1
o (28)

Considering that our step size was 0.003 we should expect errors in the oscillation period of
this order.

4.2 Results for non-zero damping

In the introduction we alluded to the fact that depending on the strength of the damping
term we get different behaviors. Here we will illustrate this with our numerical work.

For modest damping, say

b̄ =
b

Mωo

= 0.25 (29)

we get typically oscillatory behavior. The numerical solution to the differential equation in
this case is shown in Figure 3

For b/Mωo � 1, the damping is large and we relax very slowly to equilibrium. Figure 4
shows highly overdamped motion for the rather large damping

b̄ =
b

Mωo

= 8.0 (30)
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Figure 4: Damped harmonic oscillator for highly overdamped motion, b/Mωo = 8.0.

In this case the spring does not oscillate but relaxes slowly. The solution is not described
by Eq. 8.

Finally, we turn to the critical value for the damping coefficient b/Mωo = 2. In this case
the block comes down relatively quickly but does not cross the equilibrium point as is shown
in Figure 5

A Solving the equation analytically1

In this appendix we will show how the general solution to the equation of motion Eq. 1 can
be obtained.

We are motivated by Figure 3 to search for a solution of the following form

x(t) = A(t) cos(ωt− φ) . (31)

Substituting this into the equation of motion (and setting φ = 0 for simplicity) we get three
terms

m

ẍ︷ ︸︸ ︷[
Ä cos(ωt)−2ωȦ sin(ωt)−ω2A cos(ωt)

]
+b

ẋ︷ ︸︸ ︷[
Ȧ cos(ωt)−ωA sin(ωt))

]
+k

x(t)︷ ︸︸ ︷[
A cos(ωt)

]
= 0 .

Collecting the sin terms we get

−2mȦ(t)− bA(t) = 0 , (32)

or
dA

dt
= − b

2m
A(t) . (33)

1This section can be skipped if the reader is pressed for time.
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Figure 5: The case of critically damped motion, b/Mωo = 2.

A solution to this decay rate equation is

A(t) = Aoe
− b

2m
t . (34)

With this result we have

Ȧ = − b

2M
A(t) and Ä =

(
b

2m

)2

A(t) . (35)

Using these relation we collect the cos terms{
m

[
b2

4m2
− ω2

]
+ b

[
− b

2m

]
+ k

}
A cos(ωt) = 0 . (36)

Solving for the frequency we get

ω =

√
k

m
− b2

4m2
. (37)
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