
1 Ideal Gasses and Equipartition.

1. For any ideal gasses we have the equation of state

PV = NkBT (1)

Here P is the pressure, V is the volume (for a vixed particle particle number N), T is the temperature
in Kelvin and kB is the Boltzmann constant

kB = 1.38× 10−23 J
◦K

(2)

2. A microscopic analysis shows that the pressure is related to the average translational kinetic energy of
the molecules (see below)

PV =
2
3
N × 1

2
mv2 (3)

3. Usually instead of expressing the total number of particles with N , we express it in moles n, which
counts particles in units of Avagadros number 6.02× 1023

N = nNA (4)

Then we have the following facts about moles and Avagadros number:

(a) Then the ideal gas constant is defined as

R ≡ NAkB R = 8.3
J
◦K

(5)

So that the ideal gas equation of state is

PV = nRT (6)

(b) The mass of a n moles of a substance is

M = nM (7)

whereM is the molar mass, i.e. the mass of the one avagadros number of the molecule in question.

(c) The molar mass is easy to estimate. The weight of an avagadros number of protons is approxi-
mately 1 gram, i.e. M = 1g. The mass of a nuetron is approximately the mass of of a proton
mn ≈ mp. The mass of an electron is neglible me/mp ≈ 1/2000. Thus oxygen which which has 8
protons and 8 neutrons and 8 electrons the molar mass is approximately M = 16 g.

4. The energy per particle of a general (i.e. non-ideal) gas is a function (which can be measured by
measuring specific heats) of temperature and density U//N = f(N/V, T ). But the energy of an ideal
gas (where there is no interaction between the molecules) is a function of temperature only

U/N = f(T ) (8)

5. The equipartition theorem states:

The average energy of each degree of freedom is 1
2kBT

(a) The degreees of freedom of a mono-atomic are simply the motion in x, y, z

1
2
mv2

x =
1
2
mv2

y =
1
2
mv2

z =
1
2
kBT (9)
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(b) The degrees of freedom for a diatomic gas are simply motion in x, y, z and rotation around the
two axes x, y

1
2
mv2

x =
1
2
mv2

y =
1
2
mv2

z =
1
2
Iω2

x =
1
2
Iω2

y =
1
2
kBT (10)

6. From the equipartition theorem we conclude that for a mono-atomic or a diatomic gas we hve

1
2
mv2 =

3
2
kBT (11)

i.e. the root-mean square velocity is

vrms =
√
v2 =

√
3kBT
m

(12)

This is typically of order of the speed of sound vrms ∼ 400 m/s at room temp.

7. The total energy of an ideal gas is simply the kinetic energies of all the molecules.

(a) (Mono-atomic ideal gas only) For a monoatomic gas this is simply the translational kinetic energy
1
2mv

2 per molecule

U =
3
2
NkBT =

3
2
nRT (13)

(b) (Diatomic ideal gas only) For a diatomic gas the kinetic energy per molecule is translation +
rotational, 1

2mv
2 + 1

2Iω
2
x + 1

2Iω
2
y.

U =
5
2
NkBT =

5
2
nRT (14)

2 Heat and Specific Heats:

1. Heat is the transfer of microcopic forms of energy from one system to another. When heat is added to
a system which is not changing phase the temperature rises. Normally one would add heat at constant
pressure and the temperature rises as

dQp = McpdT (15)

Here the subscript p means at constant pressure , and cp is the specific heat per unit mass. The specific
heat per mole is indicated with a capitol Cp

dQp = nCpdT (16)

You should be able to show Cp =Mcp.

2. When working problems on calorimetry, since temperature differences are the same in Kelvin and
celsius ∆T = ∆t. One can often use Celsius when writing ∆Q = nCp∆t

3. When heat is added this sometimes causes the material to change phase (e.g. ice melts and water
vaporizes) rather than to rise in temperature. The amount of heat required to change the phase of a
substance of mass M is

Q = ML (17)

where L is the heat of sublimation (melting) or the heat of vaporization, etc.

4. Sometimes heat is added while keeping the volume of the gas constant

dQv = nCvdT dQv = McvdT (18)

with Cv =Mcv. These specific heats are not the same as cp and Cp.
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5. (IG only) For an ideal gas an analysis of the first law of thermodyanmics, together with Eq. ??, show
that

Cp = Cv +R (19)

One also defines the adiabatic index, which is useful for an adiabatic expansion discussed below

γ =
Cp
Cv

(20)

6. For an ideal gas you should be able to show using the first law of thermodynamics (see below) that:

(a) (MIG only) For a mono-atomic ideal gas we have

Cv =
3
2
R Cp =

5
2
R γ =

5
3

= 1.66 (21)

(b) (DIG only) For a diatomic ideal gas we have

Cv =
5
2
R Cp =

7
2
R γ =

7
5

= 1.4 (22)

3 Work and the First Law

1. During an expansion of a substance (e.g. a gas), a certain amount of macroscopic work is done as the
substance increases its volume

dW = p dV or W =
∫ Vf

Vi

pdV (23)

Generally we draw the pressure vs. volume, and the area under this curve is the work done by the gas.
A negative work means that we did postive work on the gas rather than the gas doing positive work
on us.

2. During an expansion, a certain amount of heat flows into the gas and a certain amount of macroscopic
work is done, energy of the grass changes accordingly

dU = dQ− p dV or ∆U = Q−W (24)

which is the first law of thermodynamics.

3. For processes occuring at constant volume you should show that

dU = nCV dT (any subst., const vol only) (25)

For an ideal gas where the energy is independent of the volume, one has for an arbitrary expansion

dU = nCV dT (Ideal gas, arbitrary expansion only) (26)

4. We considered various types of thermodynamic processes:

(a) An isothermal expansion is an expansion at constant temperature. For an ideal gas, you should
be able to show that

W = nRT log
Vf
Vi

(27)

For an ideal gas, we have ∆U = 0 (why?), that the heat which enters the system is Q = W

(b) In a isobaric expansion pressure is constant and the work done is

W = p(Vf − Vi) (28)

For an ideal mono-atomic gas, or a diatomic gas, you should be able to calculate the change in
temperate, energy etc.
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(c) For a heat exchnage at constant volume we have ∆V = 0 and therefore

W = 0 (29)

So ∆U = Q.

(d) For an adiabatic expansion, the heat which flows into the system is zero, Q = 0.

i. (IG only) Then for an ideal gas we have

PV γ = C where C is a constant (30)

Similarly from this you should be able to show that

TV γ−1 = C ′ where C ′ is a different const (31)

ii. (IG only) You should be able to show that the work in this case

W12 =
P1V1

γ − 1

[
1−

(
V1

V2

)γ−1
]

(32)

=
P1V1

γ − 1
− P2V2

γ − 1
(33)

iii. (IG only) In the adiabatic expansion U = −W , for an ideal gas one has

∆U = nCv(T2 − T1) (34)

You should be able to show the equivalence of Eq. 32,Eq. 33, and Eq. 34.

4 Engines

1. An engine is a cyclical machine which takes a certain amount of heat in Qin at high temperature and
expels a certain amount of heat Qout at low temperature performing useful work W in the process.
The net heat input (what we called Q above) is Q = Qin −Qout

2. The otto cycle is an idealized model of an internal combustion engine. In an engine the pistons fire,
this turns the crankshaft. As the crankshaft turns, it turns the camshaft (or shafts) which is connected
by the timing belt. The camshaft opens and closes the valves at the right time to let gas/air in and
exhaust out. Look at the web site for some videos of this.

3. In a complete cycle ∆U = 0 (or W = Q) because the energy only depends on the state variables
T, V/N which are the same at the start and end of the cycle.

4. The efficiency of the engine is the work per intake heat

ε =
W

Qin
=
Qin −Qout

Qin
(35)

5. In an engine heat is taken a hottest point Tmax and a coldest point Tmin. The maximum possible
efficiency of an engine acting between these two extremes is carnot efficiency.

εmax = 1− Tmin

Tmax
(36)
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5 Sound

1. Sound is a pressure wave. One often is interested in the (time-averaged) intensity of the wave where
the intensity is the energy per area per time.

Ī =
∆E
A∆t

(37)

2. The intensity is how loud the sound is. This is measured with the decibel scale

Ī = I0 × 10β/10 I0 = 1× 10−12 W

m2
(38)

and β is the sound level in dB. This can be written

β = 10 log10

(
I

I0

)
(39)

I0 is inaudible, 20 dB is normal, 120 dB is the threshold of pain. Every 10 dB corresponds to a factor
of ten. So an increase of 30 dB is an increase of a 1000 times more intensity.

3. The (time averaged) intensity of the pressure wave can be related to the (time average) energy density
ūE of the sinusoidal wave, and the sound velocity vs

Ī = ūEvs . (40)

Can you derive this last formula. The energy density (and intensity) can be related to the maximum
amplitude of the sinusoidal wave ∆P

ūE =
(∆P )2

2v2
sρ

(41)

Here ∆P is the maximum of the sinusoidal pressure wave, ρ = 1.29 kg/m3 is the mass density of air,
and vs = 343 m/s is the speed of sound.

4. In a spherical wave the source emitts with total power P in all directions. The intensity of the wave
decreases as

Ī =
P

4πr2
(42)

5. When two sinusoidal waves are added with different frequencies f1 and f2 we have the following identity
which is responsible for beats

A sin(2πf1t) +A sin(2πf2t) = 2A sin(2πf̄t) cos(2π
∆f
2
t) (43)

You should be able to show this by writing f1 and f2 in terms of average and difference: f1 = f̄+∆f/2
and f2 = f̄ −∆f/2 where f̄ = (f1 + f2)/2 is the average and ∆f = f1 − f2 is the difference.
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