Review of Complex Numbers

1. Show where in the complex plane are 1, \(i \), \(-1 + \sqrt{3}i \), \(\sqrt{i} \), \(\sqrt[4]{i} \), and their complex conjugates. Compute the modulus \(|z|^2 \) of each case.

2. From \(e^{i(a+b)} = e^{ia}e^{ib} \), deduce the familiar (song-based) rules for \(\sin(a + b) \) and \(\cos(a + b) \).

3. Also show that \(e^{ia} + e^{ib} = e^{i(a+b)/2} \cos((a - b)/2) \) and deduce the somewhat less familiar

\[
\begin{align*}
\cos(a) + \cos(b) &= 2\cos((a+b)/2) \cos((a-b)/2) \\
\sin(a) + \sin(b) &= 2\sin((a+b)/2) \cos((a-b)/2))
\end{align*}
\]

Discuss the physical significance of this result.

4. Show that \(1 + x + iy = \sqrt{x^2 + y^2} e^{i \theta} \) with \(\theta = \arg(x + iy) \).

5. (a) Show \(1 + i = \sqrt{2}e^{i\pi/4} \) and \(1 - i = \sqrt{2}e^{-i\pi/4} \) with \(\Delta k = k_1 - k_2 \). (b) Show \(|e^{ikr}| = 1 \) (c) Show \(|e^{ik_1 r} + e^{ik_2 r}|^2 = 2(1 + \cos(\Delta k r)) \) where \(\Psi(r) = R(r) + iI(r) \) are real functions. (d) A general wave function is \(\Psi(x) = R(x) + iI(x) \) where \(R(x) = R(x) \) and \(\phi(x) \) are real functions. (e) A general wave function is \(\Psi(x) = A(x)e^{i\phi(x)} \) where \(A(x) \) and \(\phi(x) \) are real functions. Show that \(|\Psi(x)|^2 \) is positive. Show that \(|\Psi(x)|^2 \) is positive. Show that \(|\Psi(x)|^2 = |A(x)|^2 = R(x)^2 + I(x)^2 \).

6. Ultra-Important: Compute the “n-th” derivative of \(e^{ikr} \). Start with one derivative and then generalize

\[(-i \frac{d}{dx})^n e^{ikx} \] (3)

Extra problems not on complex numbers quiz

1. Show that

\[
F(k) = \int_{-\infty}^{\infty} dx e^{ikx} e^{-a|x|} = \frac{2a}{k^2 + a^2}
\]

Hint compute the integral from \(-\infty \) to zero and zero to infinity. You will need to rationalize the denominators as in problem three. Integrals of the form

\[
F(k) = \int_{-\infty}^{\infty} dx e^{ikx} f(x)
\]

are known as fourier integrals and are very important in all fields of science.

2. Consider the function of time and position

\[\psi(x, t) = e^{-i\omega t} F(x) \] (6)

For definiteness take \(F(x) = \sin(kx) \), though any real function of \(x \) will do. Qualitatively describe the imaginary part of this function, i.e. what does it do as function of time. Qualitatively, why does this function describe a standing wave. Now consider

\[\psi(t, x) = e^{-i\omega t + ikx} \] (7)

Qualitatively describe this function as a function of time. Why does this function describe a travelling wave

Complex Numbers

If complex numbers are completely foreign to you, you must consult a more complete discussion in any precalc or calc book.
1. A complex number

\[z = x + iy = re^{i\theta} = r \cos \theta + i \sin \theta \]

This is represented in the complex plane as shown below.

2. When one multiplies complex numbers the moduli (i.e. \(r \)) multiply and the angles add.

\[z_1 z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)} \]

So multiplying by a pure phase \(e^{i\phi} \) rotates the vector \(z \) by the angle \(\phi \)

3. The complex conjugate of a complex number changes the sign of \(i \)

\[z^* = x - iy = re^{-i\theta} = r \cos \theta - i \sin \theta \]

and we note that \((z_1 z_2)^* = z_1^* z_2^*\)

4. We used the important identity

\[e^{i\theta} = \cos \theta + i \sin \theta \quad e^{-i\theta} = \cos \theta - i \sin \theta \]

and the inverse relations

\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \]

5. The modulus of complex number

\[|z|^2 \equiv z^* z = (x - iy)(x + iy) = x^2 + y^2 = r^2 \]

We make the following notes about Modulus

(a) The modulus of a pure phase is one \(|e^{i\theta}| = 1 \) In quantum mechanics the fact that the modulus of a pure wave (i.e. a single momentum) is one

\[|e^{ikx}|^2 = 1 \]

says that the electron is equally likely to be anywhere, i.e. \(\Delta k = 0 \) and \(\Delta x = \infty \).

(b) The modulus of a product is the product of the moduli

\[|ab| = |a||b| \]