
PHY 252 Lab 3: Millikan oil drop/charge of electron

Fall 2008

The purpose of this experiment is to measure the smallest unit into which electric charge can
be divided, that is, the charge e of an electron. The method is essentially the one employed by
R.A. Millikan in 1910. The essence of the experiment is to measure the terminal velocity of a
falling droplet to measure its radius r and thus mass m, and then to suspend the droplet with an
electric field so that one can measure its charge q from qE = mg. By repeating many measure-
ments, Millikan was able to show that charge comes in integer multiples of a fundamental value.
Millikin used oil droplets for his experiments; you’ll use micrometer-scale polystyrene spheres
instead.

When objects move through a fluid, one can have either turbulent or laminar flow. The dividing
line between the two is given by the Reynolds number R = ρvL/η, which is the ratio of inertial
to viscuous forces found from the fluid density ρ, dynamic viscosity η (some books use µ to
represent this), velocity v, and characteristic length L of the object moving through the fluid. Low
Reynolds number (R <∼ 30) corresponds to laminar flow, while high Reynolds number (R >∼ 3000)
corresponds to turbulent flow. In the low Reynolds number limit (appropriate for micrometer-scale
objects moving through air), the drag forces on a sphere with radius r is given by

Fd = 6πηrv. (1)

In the high Reynolds number limit (appropriate for people and cars moving through air), drag
forces are given by

Fd =
1

2
ρv2ACd (2)

where A is the area of the object and Cd is a coefficient of drag which is typically in the range 0.2–
1. The appearance of (1/2)ρv2 tells you that the kinetic energy of the air pushed aside in turbulent
flow is what determines the drag force. In the low Reynolds number limit (and neglecting the
buoyant force of air, since its density is a thousand times lower than that of polystyrene), terminal
velocity vT is reached when Fd = mg so that there is no net acceleration; from this fact, Eq. 1, and
m = (4/3)πr3ρ, one can find the radius r of the sphere to be
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Air at 25◦C has a dynamic viscosity of 1.85× 10−5 N·s/m2, and polystyrene has a density of 1050
kg/m3, so for the polystyrene spheres used in this experiment you can readily determine their mass
from their terminal velocity. Then, if you create an electric field E = V/d from a voltage V
applied to plates a distance d apart, and thereby suspend a sphere by counteracting gravity, you can
measure its charge from qE = mg or

q =
mg

E
=

mgd

V
. (5)

1 Apparatus
A schematic of the apparatus is shown in Fig. 1, and a photograph is shown in Fig. 2. In the closed
chamber, a uniform electric field E = V/d can be applied between two capacitor plates d = 0.40
cm apart by adjusting a voltage V using the right-hand knob on the power supply shown in Fig. 3.
The chamber is illuminated by a small lamp. Charged spheres (a suspension of latex in water and
alcohol) can be blown into the chamber through a tubing and a nozzle, and be viewed there through
a telescope with a calibrated scale (the spacing of graduations is 0.5 mm). Note that the telescope
gives an inverted image.

1. Turn on the light and focus the telescope on the end of the nozzle which is used to blow
spheres into the chamber. Then pull the nozzle back out of the field of view. Spheres can
now be blown into the chamber by squeezing the rubber bulb.

2. Blow some spheres into the chamber and watch them (they will look tiny). They will quickly
reach terminal velocity vT and should all be falling at the same rate in the absence of an
electric field. Measure this velocity by timing the travel of particles over a known distance
with a stop watch. Repeat several times until you get a set of consistent values. Calculate
the mass from the average terminal velocity.

3. Blow more spheres into the chamber and watch them falling. Now turn up the electric field.
You will see them reverse direction and reach a new terminal velocity, which now depends
on their charge q. Since you want to measure small charges, select one that is least affected
by the E field and adjust the voltage V to hold it stationary. Write down the value of V
(which determines E), and repeat the measurement 20 or more times, trying to find spheres
with slightly different charges.

4. Calculate q for each sphere, using Eqs. 4 and 5.

Now that you have a set of qi measurements with i = 1, 2, . . . , N , you should make a histogram
of your measurements. On the horizontal axis, pick intervals of charge q (for example, q = 0 to
0.2× 1019C, 0.2 to 0.4× 10−19C, and so on), and then within each bin plot on the vertical axis the
number of measurements that fall within that q range. Ideally you’ll get one or more peaks around
particular values of q! Assign successive integers k = 1, 2, . . . to these peaks. Now plot q versus k
for all of your data. Since we expect the relationship q = ke, the slope of a least squares fit should
give you the electron charge e!
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Figure 1: Schematic diagram of the Millikan apparatus. The atomizer squirts out small particles
into a space between two plates with a voltage difference, and particles are viewed by examining
their scattered light in a telescope.

Figure 2: Millikan apparatus. You work the atomizer by squeezing the bulb at left; the telescope
looks into the chamber which is shown at higher magnification in the image at right.

Figure 3: Voltage control for the Millikan
apparatus. The knob at right allows you
to adjust the voltage V , and the voltmeter
above the power supply lets you obtain an
accurate reading of V .
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