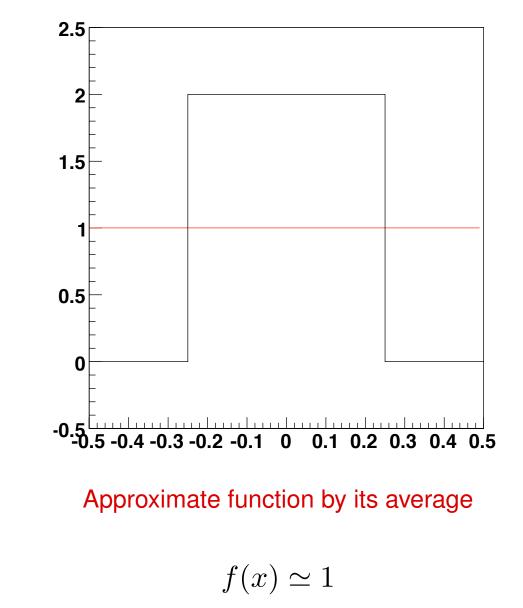
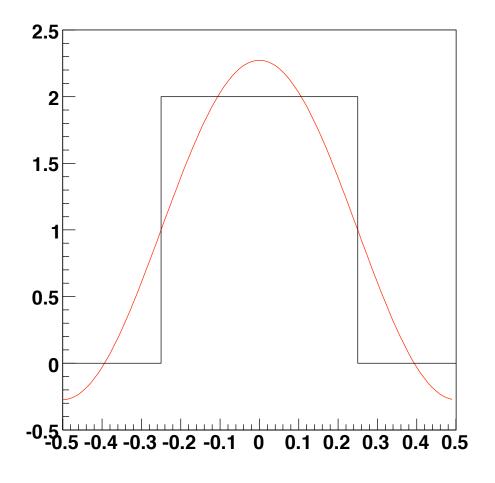
Zero-th Approximation

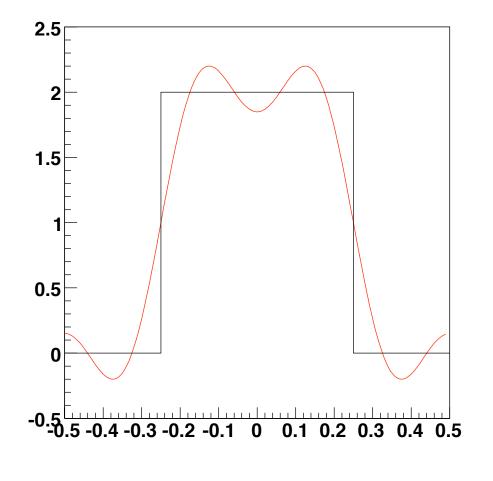




Approximate function by its average $+ \cos(x)$

$$f(x) \simeq 1 + \frac{2}{\pi}\cos(2\pi x)$$

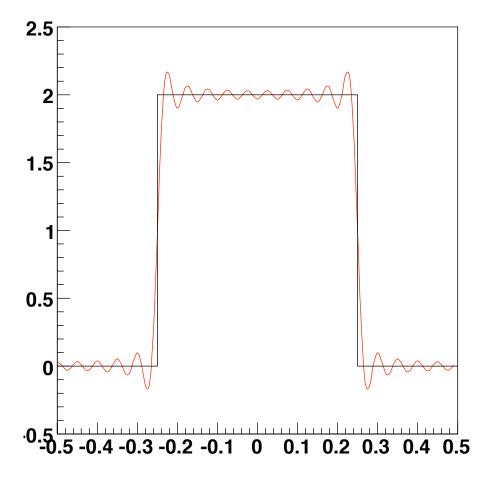
3 term Approximation



Approximate function by its average $+ \cos(x)$

$$f(x) \simeq 1 + \frac{2}{\pi} \cos(2\pi x) - \frac{2}{3\pi} \cos(2\pi \cdot 3x)$$

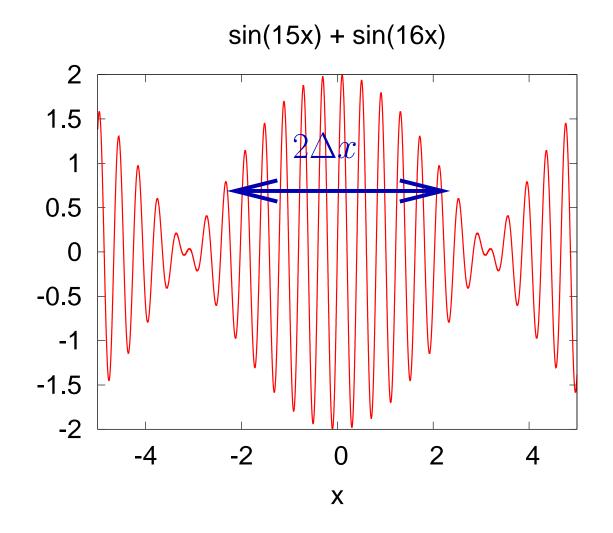
10 term Approximation



Approximate function by its average $+ \cos(x)$

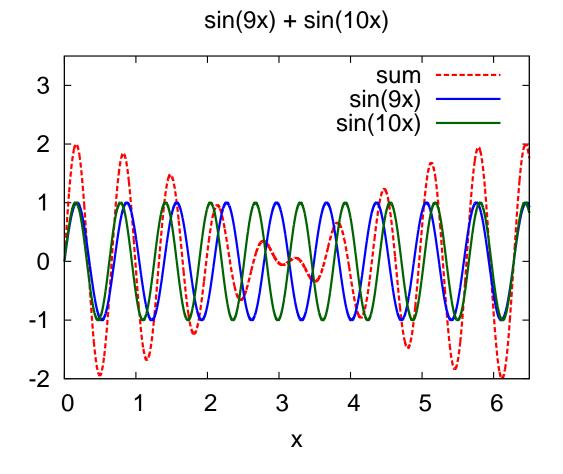
$$f(x) \simeq 1 + \frac{2}{\pi}\cos(2\pi x) - \frac{2}{3\pi}\cos(2\pi \cdot 3x) + \frac{2}{5\pi}\cos(2\pi \cdot 5x) + \dots$$

Adding two sin waves



Adding two waves of similar frequency makes "beats"

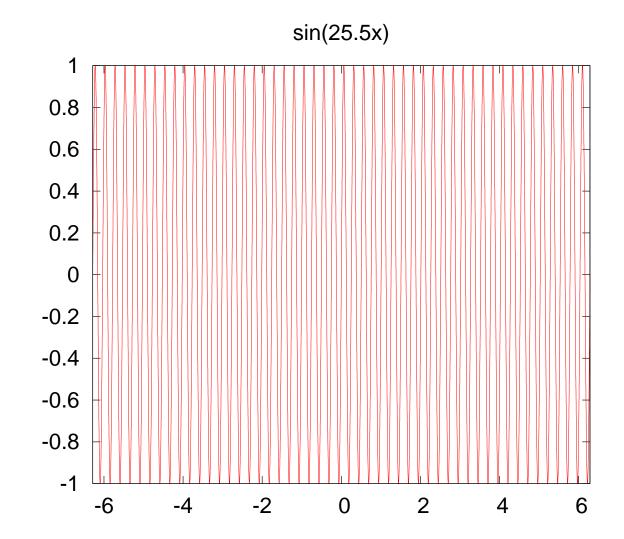
Beats Explanation



Near x = 0 the waves are in phase, but gradually get out of phase near x = 3

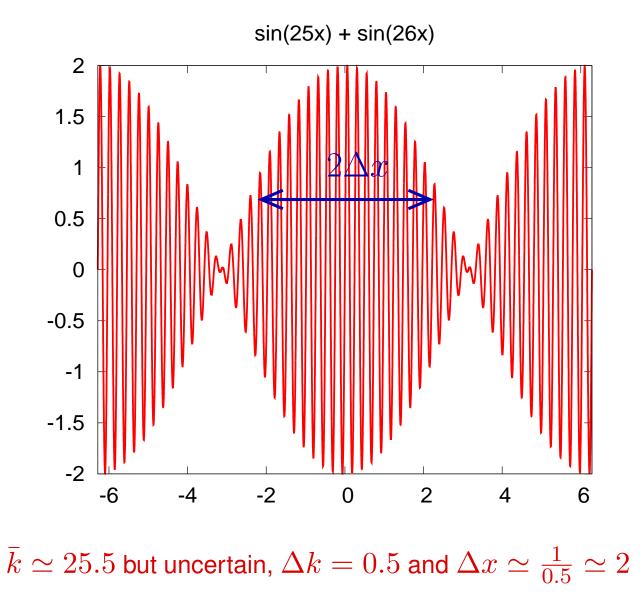
The larger the difference $\Delta k=(k_2-k_1)/2=0.5$ the more rapidly they dephase $\Delta x\sim 1/\Delta k\sim 2$

Sin wave unlocalized in space



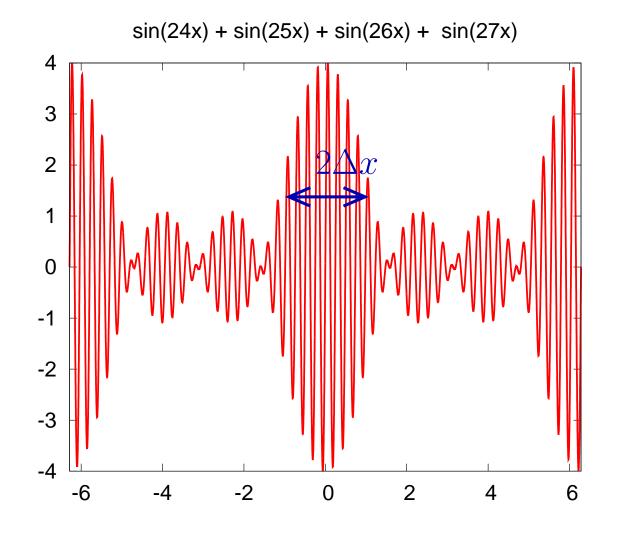
We know the wavelength $\bar{k}=\frac{2\pi}{\lambda}=25.5.$ But wave is delocalized

Wave slightly localized in space



 $\Delta x \sim rac{1}{\Delta k}$ is where the 25 and 26 components dephase

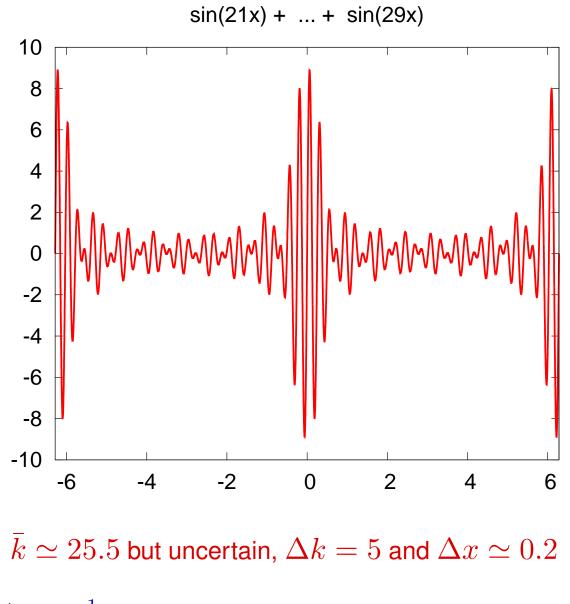
More sin waves better localized



 $\bar{k}\simeq 25.5$ but uncertain, $\Delta k=1.5$ and $\Delta x\simeq \frac{1}{1.5}\simeq 0.66$

 $\Delta x \sim rac{1}{\Delta k}$ is where the 24,25,26, 27 components dephase

More sin waves better localized



 $\Delta x \sim \frac{1}{\Delta k}$ is where the $21 \dots 29$ components dephase

Group velocity – see Michael Fowler's applet