
Problems:

1. Periodic Table. What is the electronic structure of Ne, Z = 10. Make an educated guess about its chemical
reactivity. What is the electronic structure of Oxygen Z = 8. What is the electronic structure of iron, Z = 26.
Explain why there is 10 boxes in the middle of the periodic table.

2. Veff practice: In a strange parallel universe the attraction between the electron and proton is not the Coulomb
Law but is

V (r) =
1

2
kr2

On the same graph, sketch the effective potential in this case for ` = 0 and ` = 1 and ` = 2.

3. Inflection points and classical solutions: Consider the 3p state of hydrogen. Graph the effective potential
in this case. Sketch the 3p radial wave function. Determine the inflection points of the radial wave function unl
– the table of wave functions given in class is useful. (Ans. 1.06a0, 6a0, 16.93ao)

4. Classical orbits: Consider the classical orbits corresponding to the 3p orbits, i.e. those orbits with
L2 = `(` + 1)~2 and energy E = −[~2/(2ma2

o)]1/n
2. What is the maximum and minimum velocities of

the electron in units of the speed of light, and what is the maximum radial velocity of the orbit. (Hint:

Use the results of the previous that the classical turning points are at r = 3(3 −
√

7)ao ' 1.06ao and

r = 3(3 +
√

7)ao ' 16.93ao. Also use the result that the minimum of the effective potential is at r = `(`+ 1)ao
as we showed previously. )

Extra Practice

1. Averages of PE, Angular KE, KE,: Determine the average angular kinetic energy, and the average potential
energy, and the average KE, of the 2p state of hydrogen. (Answers: ave PE=−27.2 eV/4, ave angular KE =
13.6 eV/6, and finally we have:

ave KE = E − V = −13.6 eV/4 + 27.2 eV/4

As a a challenge compute the averager radial KE directly from Eq. (45) and show that

ave KE = ave radial KE + ave angular KE

2. Average and variance of radius Determine the variance in radius of the 2p state.

3. Verify solution: Show that the 2p wave function satisfies the radial schrödinger equation

4. Sketch radial wave fcns: Sketch the 3s, 3p, 3d radial wave functions. Why are the wave functions qualitatively
different.

5. Wave function-Taxonomy: What is the total degeracy of n = 3 states. List the states . What is the squared
angular momentum and the z-component of the angular momentum for each of these states.
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2D Shrödinger Equation

1. In two dimensions the Schrödinger equations reads[
P2
x

2m
+

P2
y

2m
+ V (x, y)

]
Ψ(x, y) = EΨ(x, y) (1)[−~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)

]
Ψ(x, y) = EΨ(x, y) (2)

2. For the particle in the two dimensional box the potential is

V =

{
0 inside box −L/2 < x, y < L/2

∞ outside box
(3)

We solved this equation using separation of variables making an ansatz Ψ(x, y) = X(x)Y(y) and solving for the
functions X and Y

3. We will discuss a square box Lx = Ly = L but you should be able to generalize this to a rectangular box and
also to three dimensions

(a) The wave functions are described by two quantum numbers nx, ny and are

Ψnx,ny
(x, y) = Xnx

(x)Yny(y) (4)

with

nx = 1, 2, 3, . . . and ny = 1, 2, 3, . . . (5)

Where

Xnx
(x) =


√

2
L cos

(
nxπx
L

)
nx = 1, 3, 5, . . .√

2
L sin

(
nxπx
L

)
nx = 2, 4, 6, . . .

(6)

and similarly

Yny (y) =


√

2
L cos

(nyπy
L

)
ny = 1, 3, 5, . . .√

2
L sin

(nyπy
L

)
ny = 2, 4, 6, . . .

(7)

(b) The wave functions X(x) and Y(y) satisfy the one dimensional Schrödinger equation.[−~2

2m

∂2

∂x2

]
X(x) = εxX (8)

(c) The Energies are a sum of the kinetic energies in the x and y directions

Enx,ny
= εx + εy (9)

=
~2π2

2ML2
n2
x +

~2π2

2ML2
n2
y (10)

(d) Some wave functions can have the same energy which is known as a degeneracy. For instance the following
two states are degenerate for a square box

E21 = E12 =
~2π2

2ML2
5 (11)

This is a consequence of the fact that the x direction is no different from the y. There is a symmety in the
problem
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Particle in a Spherical Potential (Classical)

1. Energy is constant

1

2
mv2 + V (r) = E (12)

We note that if v is broken up into radial and perpendicular compoenents as shown below (so that KE =
1/2mv2

r + 1/2mv2
⊥),

!r!v

v⊥
vr

we use that 1/2mv2
⊥ = L2/(2mr2) yeilding

1

2
mv2

r +
L2

2mr2
+ V (r)︸ ︷︷ ︸

≡Veff (r)

= E (13)

where we have defined the effective potential

Veff(r) = V (r) +
L2

2mr2
(14)

(a) E − V determines the kinetic energy

(b) E − Veff(r) determines the radial KE or 1/2mv2
r

(c) Veff depends on the angular momentum of the orbit

2. The angular momentum is a constant. This is because the force points along r and hence the torque τ = r×F =
0. Thus for a classical orbit

L = mrv⊥ = mr2ω (15)

is constant. You should also remember that v⊥ can be related to the angular velocity

v⊥ = rω where ω =
dθ

dt

For small radii ω is large, while for large radii ω is small

3. You should understand this picture based on lecture which summarizes these points
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The classical turning points happen when E = Veff

Particle in a Spherical Potential (Quantum)

1. For a particle moving in a Spherically symmetric potiential all the forces are in the radial direction

F (r) = −∂V (r)

∂r
r̂ (16)

We are generally considering an electron moving in the Coulomb field of a proton. In this case the potential
and forces are the familiar

V (r) =
−e2

4πεo

1

r
F (r) = − e2

4πεor2
r̂ (17)

but we will leave V (r) general for discussion.

2. The kinetic energy operator is

−~2

2m
∇2 ≡ −~

2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(18)

=
−~2

2m

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[
1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

])
(19)

=
−~2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

L2

2mr2
(20)

Here we have defined the angular momentum squared operator

L2 = −~2

[
1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(21)

3. The Schrödinger equation reads[−~2

2m
∇2 + V (r)

]
ψnlm(r, θ, φ) = Enlψnlm(r, θ, φ) (22)

The wave functions depend on the quantum numbers nlm but it turns out that the energies do not depend on
m.
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4. For any radially symmetric potential the wave function is in general written as a product of radial wave function
Rnl(r) and angular wave functions Θ and Φ

ψnlm(r, θ, φ) = Rnl(r) Θlm(θ)Φm(φ)︸ ︷︷ ︸
≡Ylm(θ,φ)

(23)

Here th labels n, l and m are the quantum numbers. One for each dimension r, θ, φ. Note the labels: for
instace Rnl(r) depends only on n and l but not m The prodct of Θ and Φ is known as a spherical harmonic
Ylm(θ, φ) ≡ Θlm(θ)Φm(φ). For ` = 0 there is no angular dependence and Y00 = 1 and Θlm = 1.

5. Substituting the wave function of ψ = R(r)Y (θ, φ) into the shrodinger equation we find an equation for R and
an equation for Y .

(a) The equation for R is the radial schrodinger equation is discussed in the next section[
− ~2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+
`(`+ 1)~2

2mr2
+ V (r)

]
Rnl = EnlRnl(r) (24)

The solutions Rnl depend on the potential V (r)

(b) The equation for Ylm(θ, φ) is discussed below

L2Ylm(θ, φ) =`(`+ 1)~2Ylm(θ, φ) (25)

Only for certain values of the constants E and `(` + 1)~2 will the solutions be bounded. In particular it
turns out that ` must be an integer. The functions Ylm(θ, φ) = Θlm(θ)Φm(φ) are shown in table (54). The
angular piece is valid for all spherically symmetric potentials, while the radial piece is specific to hydrogen.

6. In general the wave functions are characterized by the three quantum numers

(a) The principle quantum number

n = 1, 2, 3, 4 . . . (26)

labels the total number of excitations of the wave function More precisely n − 1 is the total number of
excitations in either the radial or angular directions.

• Note: For a general radial potential the energy of the wave depends on wether the excitation is in
the angular or radial direction. Thus the energy is a function of n and `, En`. For the specific case of
hydrogen where V (r) ∝ 1/r the energy only depends on n due to a peculiarity of the Coulomb Law,
where En` = −13.6/n2

(b) The angular momentum quantum number `

` = 0, 1, . . . n− 1 (27)

counts the total number of angular excitations of the wave, which must be less than the total, n−1. These
wave functions have definite angular momentum

L2 = `(`+ 1)~2. (28)

` = 0, 1, 2, 3, 4 . . . also called by the names “sharp, principle, diffuse”

` = s, p, d, f, g (29)

i.e. an “s-wave” is another name for the ` = 0 wave function.

• Note: The number of radial excitations is (n− 1)− `
(c) And a finally “magnetic” quantum number. |m| is the number of azimuthal angular excitations around the

z axis. with

m = 0,±1,±2,±3 . . .± ` (30)

Clearly the number of azimuthal excitations should be less than `. The sign indicates wether the angular
excitation is counter-clocwise m > 0 (i.e. if you use the right hand rule your thumb points up) or clockwise
m < 0 These wave functions have definite z component of angular moemntum

Lz = m~Y`m (31)

which can be positive or negative.
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7. Examples:

(a) Thus for n = 2 (the first excited state) we the following four states

(n = 2, ` = 0,m = 0)︸ ︷︷ ︸
s−wave, 2s

(n = 2, ` = 1,m = −1) (n = 2, ` = 1,m = 0) (n = 2, ` = 1,m = +1)︸ ︷︷ ︸
p−wave, 2p

(32)
For the hydrogen atom these states are listed in Eq. (54)

(b) When we refer to the 3d state, we mean n = 3 and ` = 2 and m = −2,−1, 0, 1, 2
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Radial Part of Schrödinger Equation

1. For ` = 0 m = 0 the wave function is independent of angle Θ00 = Φ0 = 1.

Ψn00 = Rn0(r) (33)

2. The probability dP is

dP = |Ψ|2 dV = |Rnl(r)|24πr2dr = P(r)dr (34)

where the 4πr2dr is the volume of a spherical shell. Thus:

(a) The probability to find a particle per volume is |Ψ|2

(b) The probability to find a particel per unit radius is:

P(r) = |Rnl|24πr2 = |unl(r)|2 (35)

where we have defined the unl(r) =
√

4πr2Rnl(r)

(c) The functions are normalized so that∫
dP =

∫ ∞
0

|Rnl(r)|24πr2dr =

∫ ∞
0

|unl(r)|2dr = 1 (36)

3. As in the previous item, it is useful to define the “radial wave function” unl

unl(r) ≡
√

4π rRnl(r)

This is useful because then P(r) = |unl(r)|2 as described above. If the wave function of the form given in
Eq. (23), then the radial Schrödinger equation for R (Eq. (24)) reduces to the the radial Schrödinger equation
for unl  −~2

2m

∂2

∂r2︸ ︷︷ ︸
radial KE

+
`(`+ 1)~2

2mr2︸ ︷︷ ︸
angular KE

+V (r)

un` = Enlunl (37)

(a) For ` = 0 (no angular momentum) this reduces to a 1D shrodinger equation in the potential V (r).

(b) For ` 6= 0 there is an extra “potential” which represents the kinetic energy in the agular direction, i.e.

Veff(r) = V (r) +
`(`+ 1)~2

2mr2
(38)

By considering the motion of a particle in a circle you should be able to show classically that

KE =
1

2
mv2

r︸ ︷︷ ︸
radial KE

+
L2

2mr2︸ ︷︷ ︸
angular KE

(39)

where L = mv⊥r is the angular momentum. For a wave function with agular quantum number ` the
angular momentum L2 = `(` + 1)~2 as discussed in Eq. (28). Thus the form of this extra potential is
understandable.

(c) You should be able to graph the effecitve potential and qualitatively sketch the wave function as in one
dimension.

(d) To understand the effect of this this extra potential, we note first that the “centripetal force” for a classical
particle moving in a circle is

FC = m
v2

r
r̂ =

L2

mr3
r̂ (40)
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where L = mvr is the angular momentum. For a state with agular quantum number the angular momentum
L2 = `(`+ 1)~2 as discussed near Eq. (28). Then we note that the “force” due to this extra potential

FC = − ∂

∂r

`(`+ 1)~2

2mr2
r̂ =

L2

mr3
r̂ (41)

Thus the effect of this extra term is to provide the “centripetal force”. Classically there is no real “cen-
tripetal force”. It just summarizes the effect of the circular motion on the radial direction. Similarly there
is no extra potential really, it is just the effect of the angular kinetic energy on the radial dynamics.

4. We can average different quantities

PE =

∫ ∞
0

−e2

4πεor
P(r)dr (42)

and

r =

∫ ∞
0

r P(r)dr (43)

The variance in the radius is

(∆r)2 ≡ r2 − r2 (44)

5. The average kinetic energy is

KE =

∫ ∞
0

u∗nl

− ~2

2m

∂2

∂r2︸ ︷︷ ︸
radial KE

+
`(`+ 1)~2

2mr2︸ ︷︷ ︸
angular KE

unldr (45)

6. You should be able to verify that this or that functions satisfies the radial Schrödinger equation. You should be
able to describe the qualitative features
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Angular Part of the Schrodinger Equation (not really part of exam):

1. The wave functions have definite squared angular momentum labeled by the orbital quantum number ` and m

ψnlm = Rnl(r)Ylm(θ, φ) (46)

so that

L2Ylm = `(`+ 1)~2 Ylm (47)

The magnetic quantum number m records the angular momentum about the z-axis.

LzYlm = m~Ylm (48)

where the angular momentum squared operator and are

L2 = −~2

(
1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
(49)

Lz = −i~ ∂

∂φ
(50)

` m Φm(φ) Θlm(θ)

0 0 1 1

1 0 1
√

3 cos(θ)

1 ±1 e±iφ
√

3
2 sin(θ)

2 0 1
√

5
4 (3 cos(2θ) + 1)

2 ±1 e±iφ
√

15
2 sin(θ) cos(θ)

2 ±2 e±i2φ 1
2

√
15
2 sin2(θ)

(51)
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Hydrogen Atom

• For the special case of the hydrogen atom the potential V (r) is just the Coulomb potential

V (r) = − e2

4πεor
(52)

• The energies are

En` = − ~2

2ma2
0

Z2

n2
= −1

2

e2

4πεoa0

Z2

n2
(53)

We note that the fact that the energies are independent of ` for the hydrogen atom is special to the 1/r
potential.

• The lowest order wave functions are

n ` m Φm(φ) Θlm(θ) Rnl(r) Ψnlm

1 0 0 1s 1 1 1√
πa3o

e−r/ao 1√
πa3o

e−r/ao

2 0 0 2s 1 1 1√
32πa3o

(
2− r

ao

)
e−r/2ao 1√

32πa3o

(
2− r

ao

)
e−r/2ao

2 1 0 2p 1
√

3 cos(θ) 1√
96πa3o

r
ao
e−r/2ao 1√

32πa3o

r
ao
e−r/2ao cos(θ)

2 1 ±1 2p e±iφ
√

3
2 sin(θ) 1√

96πa3o

r
ao
e−r/2ao 1√

64πa3o

r
ao
e−r/2ao sin(θ)e±iφ

(54)

• An integral which comes up a lot is ∫ ∞
0

dxxne−x = n! (55)

• For n = 3 we will quote the Rnl only. For the necessary table of Θlm and Φm see Eq. 51. Here

ρ ≡ 2r

3ao
(56)

n ` Rn`

3 0
√

40
(4π)6!

(
2

3ao

)3/2
1
2

(
6− 6ρ+ ρ2

)
e−ρ/2

3 1
√

5
(4π)6!

(
2

3ao

)3/2

(4− ρ) ρ e−ρ/2

3 2
√

1
(4π)6!

(
2

3ao

)3/2

ρ2 e−ρ/2

(57)
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Atoms

• Electrons fill up orbitals one by one. There are some things to know when filling up the shells

– After filling the 3p orbital, one starts filling the 4s orbital before filling the 3d orbital. This is because the
4s state is actually lower than the 3d state as shown below. They are very close however.

1s

2s 2p
3s

3p
4s

3d
4p

Energy

! = 0 ! = 1 ! = 2
– Hunds Rule. Take filling up the 3p orbital for example. When filling up the 2p orbital one first fills up

the m levels with the same spin, and then one starts the process again for the next spin. See Fig. 9.15 of
the book for a good explanation. Thus the structure of Oxygen (with Z = 8) is the following

O : [↑↓]︸︷︷︸
1s2

[↑↓]︸︷︷︸
2s2

[

m=−1,0,1︷︸︸︷
↑↑↑ ↓]︸ ︷︷ ︸

2p4

where each arrow represents an electron.
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