
Problems:

5.1, 5.9, 5.12, 5.13

1. Stationary States:

(a) Take the stationary states of the a particle in the box Ψn(x, t) = Ψn(x)e−iEnt/~. Show that that E = En,

E2 = E2
n, and ∆E = 0

2. Graded Consider a (pretty good!) model of the vibrations of HCl made up of hydrogen and clorine atoms in
an ionic bond shown below.

Equilibrium distance

x

Cl H

In general the hydrogen nucleus (i.e. the proton) vibrates around its equilibrium position since it can never be
exactly at one spot. Make a model of these vibrations by considering the chlorine nucleus to be very heavy and
therefore fixed in space (it is 35 times heavier than the hydrogen atom.) When discussing the vibrations of the
hydrogen nucleus neglect any effects due to the motion of the electrons (electrons are very light compared to
nucleus – e.g. when two trucks collide the motion of the mirror is irrelevant. The electrons move much more
quickly than the nuclei too as we will see below.) For small displacements of the hydrogen nucleus from its
equilibrium position, the force will be proportional to the displacemnet F = −Cx (I use C instead of k because
thats what the book uses). This means that the potential energy is like a spirng 1

2Cx
2. We recall that the

classical oscillation frequency is

ωo = 2πf =

√
C

m

where m is the mass of the hydrogen nucleus. Classically the hydrogen nucleus would arrive at the bottom
of the potential well and have no displacement from equilibrium. Quanum mechanically the potential tries to
squish the wave function of the proton to the very bottom of the well. But this is balanced by the kinetic energy
associated with the uncertainty principle, i.e. if a wave is small in size its typical momentum is very large. We
will describe the wave function of the proton

(a) Estimate the size of the ground state wave function by balancing the kinetic and potential energies. (Answer

: size ∼
(

~2

mC

)1/4

∼
(

~
mωo

)1/2

)

(b) Estimate the average kinetic, potential, and total energies in terms of ωo using the uncertainty principle.
(Answer, should be very simple)

(c) The normalized ground state wave function of the harmonic oscillator is

Ψ0(x) =

(
1√
πL

)1/2

e−
x2

2L2 (1)

where

L =

(
~2

mC

)1/4

=

(
~

mωo

)1/2

.

This is the wave function of the proton Show that this wave function is a solution to the time independent
Schrödinger equation and determine the energy associated with this state.

(d) Determine x, x2, p, p2. (Answers: simple, L2/2, simple, (~/L)2/2 )

(e) Show that the ground state of the harmonic oscillator saturates the uncertainty principle:

∆x∆p =
~
2

1



(f) Determine the average kinetic, potential and total energies using the results of part (d) and compare to
your estimate of part 2.

(g) Measured spring constants are typically C = 29.6 eV/Å2. Substitute numbers into parts (a), (b) and
compare your results to the Bohr radius and a typical atomic-electronic energy ∼ 2 eV. You should find
that the energies associated with molecular vibrations are about 1/20th of electronic excitation energies.

(h) Finally determine the root-mean-square velocity of the hydrogen nulceus

vrms ≡

√
p2

m2
,

and compare your velocity to the velocity of an electron in the lowest Borh orbit. You should find v ∼
3600m/s or about 1/1000th of the bohr orbital velocity.

(i) You may find the following integrals useful.∫ ∞
−∞

du e−u
2

=
√
π

∫ ∞
−∞

duu2e−u
2

=

√
π

2
(2)

Wavefunctions

1. The electron wave function squared |Ψ(x, t)|2 = P(x, t) is a probability per unit length to find the particle at
time t. Thus the probability dP to find a particle between x and x+ dx at time t

dP = P(x, t)dx = |Ψ(x, t)|2dx (3)

2. The electron must be somewhere so ∫ ∞
−∞

dx |Ψ(x, t)|2 = 1 (4)

3. The average position at time t

x =

∫
dxx |Ψ(x, t)|2 (5)

4. The average position squared at time t is

x2 =

∫
dxx2 |Ψ(x, t)|2 (6)

5. The uncertainty squared in position (∆x)2 (or standard deviation squared) is defined to be

(∆x)2 ≡ x2 − x2 = (x− x)2 (7)

If the average position is zero x̄ = 0 then (∆x) ≡
√
x2 is the “root mean square” position. This gives a measure

of how spread out is the wave function

Momentum Averages

1. We use a notation for “Operators”

x̄ =

∫ +∞

−∞
dxΨ∗(x)XΨ(x) (8)

=

∫ +∞

−∞
dxΨ∗(x)xΨ(x) (9)

Here X is an simply an “operator” which takes the function Ψ(x) and spits out the new function xΨ(x). It just
gives a notation to things that we alaready understand, for example X2Ψ(x) = XxΨ(x) = x2Ψ(x)
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2. The average momentum is

p̄ =

∫ +∞

−∞
dxΨ∗(x)PΨ(x) (10)

=

∫ +∞

−∞
dxΨ∗(x)

(
−i~ d

dx

)
Ψ(x) (11)

=

∫ +∞

−∞
dxΨ∗(x)

(
−i~dΨ

dx

)
(12)

Here the momentum operator is

P = −i~ d

dx

takes the function Ψ(x) and spits out the derivative −i~dΨ
dx .

3. The average momentum squared is

p2 =

∫ +∞

−∞
Ψ∗(x)P2Ψ(x) (13)

=

∫ +∞

−∞
Ψ∗(x)

(
−~2 d

2

dx2

)
Ψ(x) (14)

4. The uncertainty squared in momentum (or standard deviation squared) is defined like for (∆x)2

(∆p)2 ≡ p2 − p2 (15)

Again if p is zero then ∆p ≡
√
p2 is the “root mean square” momentum.

5. The average kinetic energy is

KE =

∫ +∞

−∞
Ψ∗(x)

[
− ~2

2m

d2

dx2

]
Ψ(x) (16)

6. The formal statement of the uncertainty principle is

(∆x)(∆p) ≥ ~
2

(17)

where the standard deviation in position ∆x and momentum ∆p are defined as above. (You can see why its a
good thing that we know how to use it before we can state it precisely)

Quantum Mechanics

1. As with momentum, the average energy of a particle

E =

∫
Ψ∗(x, t)EΨ(x, t) (18)

=

∫ ∞
−∞

dxΨ∗(x, t)

[
+i~

∂

∂t

]
Ψ(x, t) (19)

and the energy operator

E = +i~
∂

∂t
(20)

Note the difference in sign between this and the momentum operator P which ultimately is a reflection of the
fact that waves are written e+i(kx−ωt) with opposite signs for k and ω
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2. The Schrödinger equation can be written[
P2

2M
+ V (X)

]
Ψ(x, t) = EΨ(x, t) (21)[

− ~2

2M

d2

dx2
+ V (x)

]
Ψ(x, t) = +i~

∂Ψ

∂t
(22)

where V(x) is the potential energy (think V = 1/2 kx2)

3. The stationary wave functions (or eigenfunctions, or standing wave patterns) have the following form

Ψ(x, t) = e−i
Ent
~ Ψn(x) (23)

These are called stationary because the square does not depend on time

|Ψ(x, t)|2 =
∣∣∣e−iEnt

~

∣∣∣2 |Ψn(x)|2 (24)

= |Ψn(x)|2 (25)

Since the wave funcion does not depend on time, we can take a long time to determine the energy. So stationay

wave functions have functions exactly one energy, E = En, and ∆E is zero. ∆E2 = E2 − E2

4. Stationary wave functions (also known as eigenfunctions) obey the time independent Schrödinger equation.[
− ~2

2M

d2

dx2
+ V (x)

]
Ψn(x) = EnΨn(x) (26)

Here the En are the energy levels (as in the En = −13.6eV/n2 in the Bohr Model) and Ψn are the stationary
wave functions

Particle in the Box

1. For an electron bouncing around in a box of size a the stationary wave functions (eigen-functions) are

Ψn(x) =


√

2
a cos

(
nπx
a

)
n = 1, 3, 5, . . .√

2
a sin

(
nπx
a

)
n = 2, 4, 6, . . .

(27)

while the stationary energies are

En =
~2k2

n

2M
=

~2π2

2Ma2
n2 n = 1, 2, 3, 4, 5, . . . (28)
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