
Numerical Solution of a Potential–Final Project

1 Introduction

The purpose is to determine the lowest order wave functions of and energies a potential
which describes the vibrations of molecules fairly well. Consider the vibrations of diatomic
HBr (Hydrogen Bromide). It is a gas room temperature and is useful in several respects
[1] For simplicity, we will consider Bromine nucleus fixed (it has nearly 80 times the mass
of hydrogen) and consider the oscillations of the hydrogen nucleus. The potential for the
hydrogen nucleus has the following phenomenological form

V (x) =Vo(1− e−x/a)2 , (1)

where x is the displacement of the hydrogen nucleus from equilibrium. For Vo = 50 h̄2/Ma2

a graph of the potential is shown below. We will solve for the energies and wave functions in
this potential. For small fluctuations around the equilibrium (i.e. small quantum number n) a
harmonic oscillator approximation is valid, and the energies are given by the simple harmonic
oscillator (see below). However for larger fluctuations around equilibrium (large quantum
number n) the shape of the potential matters and the harmonic approximation is poor.
The graph below shows the energies for this potential and the energies in a corresponding
harmonic approximation. One sees that as n becomes large the harmonic approximation
starts to fail.

For actual hydrogen bromide the parameters are: a ' 1.1ao ' 0.58 Å and Vo ' 4.83eV '
433 h̄2/Ma2 [2]. Because Vo is rather large (relative to h̄2/Ma2), the energies are quite close
to the harmonic approximation until the quantum number is rather large. We will therefore
use Vo ' 50 h̄2/Ma2 in our analytical and numerical work unless otherwise directed.

2 Analysis

1. For what range of energies do we expect discrete energies and for what range do we
expect continuous energies.. Describe classically what would happen if the nucleus were
to be given a kick (e.g. by light) of energy E in the discrete case and the continuous
case. Why is Vo called the dissociation energy?

2. Near the minimum, we can approximate the full potential with a simple harmonic
potential. Show that near x = 0

V (x) ' 1

2
kx2 , (2)

where k ' 2Vo/a
2. Show that allowed energies of the molecular vibrations are approx-

imately

E = h̄ωo(n+
1

2
) , (3)

and determine ωo in terms of Vo and a.
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Figure 1: The potential and its harmonic oscillator approximation. The horizontal lines
show the allowed energies for the full potential and the the allowed energies in the harmonic
oscillator approximation

3. Show that the classical turning points of the potential occur at

x∓ = −a log
(

1±
√
E/Vo

)
.

4. Write the potential as as a harmonic oscillator + corrections. Show that

V (x) ' 1

2
kx2 + δV (x) with δV (x) ' −V0

(x
a

)3

(4)

and show that in a first approximation δV (x) does not change the ground state energy.

5. Expanding to higher order, we estimate that higher order corrections are of order

δE ∼ Vo

(x
a

)4

. (5)

Estimate that x4 ∼ L4 where L is the size of the harmonic oscillator wave function
which we estimated in class [3]. Use this to estimate that higher order corrections are
of order

δE ∼ h̄ωo

(
h̄ωo

Vo

)
(6)
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Thus the full energy is

En = h̄ωo(n+
1

2
) +O(δE) (7)

where δE records anharmonic corrections.

6. Use classical reasoning and the harmonic oscillator approximation to gain intuition
about the dynamics of HBr. For this part only use the parameters of the real Hydrogen
Bromide molecule.

(a) For the parameters of Hydrogen Bromide what is the typical energy spacing h̄ωo

in eV. What range of the electromagnetic spectrum does this correspond to (e.g.
x-ray, visible, infrared, microwave, radio, etc). How does this molecular vibration
energy compare to electronic excitation energies in hydrogen?

(b) Estimate the % correction to the energy due to anharmonic terms?

(c) Assume that the vibrational energy is h̄ωo, what is the maximum displacement of
the molecule from equilibrium in units of the Bohr radius. You should find it is
smaller.

(d) Assume that the vibrational energy is h̄ωo, determine the maximum velocity of
the nucleus and compare it the velocity of an electron in the lowest Bohr orbit.

(e) This is a comment. It is useful to realize that during the time it takes the hydrogen
nucleus to make one vibration. The electron circling the hydrogen has made
many many orbits N ∼ 50. Thus the nucleus is making small, slow, vibrations
on electronic scales. This is why it is a good approximation to treat it separately
from the electrons.

7. Watch this absolutely great you-tube-video which explains how the vibrational fre-
quencies of different molecular bonds can be measured. Include a schematic of the
experimental setup in your report. A typical output from a spectrometer is shown in
Fig. 2

8. Now introduce a set of dimensionless variables. The dimensionful constants of this
problem are

h̄,M, a, Vo

Choose to measure distance in units of a, energies in units of (h̄2/Ma2) and mass in
terms of M . Define

x =
x

a
vo =

Vo

(h̄2/Ma2)
= 50 ε =

E

(h̄2/Ma2)
(8)

(a) Show that the Schrödinger equation[
−h̄2

2M

d2

dx2
+ V (x)

]
Ψ(x) = EΨ(x) (9)
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Figure 2: A typical result from a spectrometer in the ??? part of the electromagnetic
spectrum. The units on the x axis are wavenumber, k = 2π/λ = E/h̄c of the photon

becomes in terms of these dimensionless variables.

d2ψ̄

dx2
=− 2(ε− v(x)) ψ̄ (10)

where

v(x) =vo(1− e−x)2 (11)

We will solve this numerically on the computer

(b) Show that the discrete energies in the harmonic oscillator approximation are

εn =
E

h̄/Ma2
=
√

2vo

(
n+

1

2

)
(12)

and that the turning points are

x∓ = − log(1±
√
ε/vo) (13)

3 Numerical Analysis

1. On the web site for the course you will find a link to a matlab program which solves
the simple harmonic potential sho.m.

V (x) =
1

2
kx2 . (14)
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A ultrabrief intro to matlab is also on the web site. The numerical procedure to solve
for this potential was discussed in lecture and the lecture is available online [3]. The
energies of the oscillator

ε =
E

h̄ωo

= n+
1

2
. (15)

First run the simple harmonic oscillator program. Read through it and understand
how it works. Change the energy and see that you can reproduce what you expect
for the first excited state and the second excited state. You will need to change the
limits on the graphs of the wave functions in order to make a good plot of these wave
functions. You do not need to include your experiments in your report. A sample
figure produced by sho.m is shown in Fig. 3

2. Modify this program to solve for the energies and wave functions of the current poten-
tial. Here is some advice:

(a) First, construct a grid from x = −1.2 . . . 4 rather than −5 . . . 5 as was used in the
harmonic oscillator.

(b) Set the energy to the lowest order energy of the harmonic oscillator approximation
to get started, ε =

√
2vo

1
2

(c) You should adjust the ranges of the graphs so that both the potential and the
wave function are clearly visible:

i. For the potential graph my ranges are x = −1 . . . 4 and y = 0 . . . v0, i.e. I
make the range up to vo

ii. For wave function graph my ranges are x = −1 . . . (x+ + 1.3) , i.e. I make a
plot a unit and a half beyond the turning point.

(d) After modifying the code you should find for ε = 0.5
√

2vo a graph that looks as
shown in Fig. 4. If you can not do this step you will have to ask me or your TA
for help.

(e) εhigh = 0.5
√

2vo is not the correct energy; it is too high. Change the energy to
εlow = 0.4

√
2vo. This is also is not the allowed energy; it is too low. You should

realize that the correct energy is in between these values – Why?.

(f) Now manually search for the correct energy using a bisection search procedure:

i. Try halfway between εlow and εhigh.

ε∗ =
εlow + εhigh

2

ii. If ε∗ is too high, then the real energy is in between εlow and ε∗. Set εhigh = ε∗
and go back to step one.

iii. If ε∗ is too low, then the real energy is between ε∗ and εhigh. Set εlow = ε∗ and
go back to step one.
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Figure 3: Sample figure produced by sho.m.
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(g) In this way, I tried the following sequence1 of [εlow, εhigh]:

[0.4, 0.5], [0.45, 0.5], [0.475, 0.5], [0.4874, 0.5], [0.4874, 0.49375], [0.4874, 0.49062],

[0.4874, 0.4890], [0.4874, 0.4882], [0.4874, 0.4879]

I conclude from the last bin that

ε0∗ ' (0.4877± 0.0003)
√

2vo

(h) For this part (question 2.), include two plots one for the last ε0,low, one for the
last ε0,high. For inclusion with part 4. also make a graph of your final estimate of
ε0∗ ' ε0.

3. Change your grid spacing from ∆x = 0.01 to ∆x = 0.005, and see how the first excited
state changes. Record a graph of showing εlow and εhigh in this case.

4. Now change the grid spacing back to ∆x = 0.01. Find the first four excited states
following the same procedure to a precision of better than 0.25%. Include in your
report one graph (εn,∗ say) for each energy, from n = 0, 1, 2, 3, 4. Be sure that in the
title of your graph you record your final energy and the uncertainty in the energy.

4 Summary & Your Report

1. Your report should consist of the answers to all of the questions of Sect. 2.

2. A total of 9 graphs from Sect. 3

• εlow and εhigh for ∆x = 0.01

• εlow and εhigh for ∆x = 0.005

• Graphs for ε0∗, . . . , ε4∗.

The axes of each graph should be clearly labeled. A short title should be given to
explain what the graph is about: Also record ε, n, and ∆x and any other relevant
data. Feel free to label graphs by hand if you find it easier and quicker.

3. Also provide a short summary based on the following remarks: In fact the energies for
this potential are known analytically

En = h̄ωo

(
n+

1

2

)
− h̄ωoxe

(
n+

1

2

)2

(16)

where ωo is
√
k/M as computed in Sect. 2, and the xe is a dimensionless parameter

which measures the deviation from the harmonic oscillator

xe =
h̄ωo

4Vo

(17)

1 ε1 = 0.4875
√

2vo is very close to the actual energy. 0.4874
√

2vo was chosen as it was clearly below the
actual energy.
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Figure 4: Sample figure for the potential of we are studying V (x) = V0(1− e−x/a)2.
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What is xe for the potential we are considering, what is it for HBr, and why is it called
the anharmonicity parameter. (Hint examine Eq. 16 and use the results of question 5.)
Summarize your results for the energies in a table, showing the computed energies (and
their uncertainties), the estimate for the energy based on the simple harmonic oscillator
approximation, and the exact energy based on Eq. 16. Very briefly discuss how your
energies and wave functions differ from the harmonic oscillator wave functions.
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