Mini-review of General Relativity (GR)

1. Principle of Equivalence

2. Bending of Light

\[\Delta \theta = \frac{4GM}{c^2 R} \]
or
\[\Delta \theta = 1.76 \text{ arcsec for light near sun} \]

3. Gravitational Lensing

4. Black Holes – light can not escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

5. Precession of Perihelion of Mercury – see here. The GR contribution is

\[\frac{\Delta \theta}{\Delta t} \sim \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \]
exact calculation gives \(\frac{\Delta \theta}{\Delta t} \simeq 43 \text{ arcsec/century} \)

6. Today. Gravitational Red-shift and applications
Equivalence Principle

- There is no experiment a person could conduct (in a small volume) that can distinguish gravitational forces from accelerated motion.

Things move the same way in a gravity field as those in a reference frame accelerating upward with the same magnitude.
Mini-review of General Relativity (GR)

✓ Principle of Equivalence

2. Bending of Light

\[\Delta \theta = \frac{4GM}{c^2 R} \quad \text{or} \quad \Delta \theta = 1.76 \text{ arcsec for light near sun} \]

3. Gravitational Lensing

4. Black Holes – light can not escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

5. Precession of Perihelion of Mercury – see here. The GR contribution is

\[\frac{\Delta \theta}{\Delta t} \sim \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \quad \text{exact calculation gives} \quad \frac{\Delta \theta}{\Delta t} \sim 43 \text{ arcsec/century} \]

6. Today. Gravitational Red-shift and applications
Measuring the bending of light

- Measure the deflection of starlight as it goes near the sun
- Compare angles between the stars during a solar eclipse, and at night at a different time of the year

source http://undsci.berkeley.edu/article/0_0_0/fair_tests_04
Mini-review of General Relativity (GR)

✓ Principle of Equivalence

✓ Bending of Light

\[\Delta \theta = \frac{4GM}{c^2 R} \quad \text{or} \quad \Delta \theta = 1.76 \text{ arcsec for light near sun} \]

3. Gravitational Lensing

4. Black Holes – light can not escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

5. Precession of Perihelion of Mercury – see here. The GR contribution is

\[\frac{\Delta \theta}{\Delta t} \sim \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \quad \text{exact calculation gives} \quad \frac{\Delta \theta}{\Delta t} \approx 43 \text{ arcsec/century} \]

6. Today. Gravitational Red-shift and applications
Gravitational Lensing in Observational Astronomy

source - Wikimedia
Mini-review of General Relativity (GR)

✓ Principle of Equivalence

✓ Bending of Light

\[\Delta \theta = \frac{4GM}{c^2R} \quad \text{or} \quad \Delta \theta = 1.76 \text{ arcsec for light near sun} \]

✓ Gravitational Lensing

4. Black Holes – light cannot escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

5. Precession of Perihelion of Mercury – see here. The GR contribution is

\[\frac{\Delta \theta}{\Delta t} \sim \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \]

exact calculation gives \(\frac{\Delta \theta}{\Delta t} \simeq 43 \text{ arcsec/century} \)

6. Today. Gravitational Red-shift and applications
Mini-review of General Relativity (GR)

✓ Principle of Equivalence

✓ Bending of Light

\[\Delta \theta = \frac{4GM}{c^2 R} \text{ or } \Delta \theta = 1.76 \text{ arcsec for light near sun} \]

✓ Gravitational Lensing

✓ Black Holes – light cannot escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

5. Precession of Perihelion of Mercury – see here. The GR contribution

\[\frac{\Delta \theta}{\Delta t} \approx \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \text{ exact calculation gives } \frac{\Delta \theta}{\Delta t} \approx 43 \text{ arcsec/century} \]

6. Today. Gravitational Red-shift and applications
Mini-review of General Relativity (GR)

✓ Principle of Equivalence

✓ Bending of Light

\[\Delta \theta = \frac{4GM}{c^2 R} \]

or

\[\Delta \theta = 1.76 \text{ arcsec for light near sun} \]

✓ Gravitational Lensing

✓ Black Holes – light cannot escape for \(R < R_{\text{sch}} \)

\[R_{\text{sch}} = \frac{2GM}{c^2} \]

✓ Precession of Perihelion of Mercury – see here. The GR contribution

\[\frac{\Delta \theta}{\Delta t} \sim \frac{360^\circ}{88 \text{ days}} \left(\frac{v}{c} \right)^2 \]

exact calculation gives \(\frac{\Delta \theta}{\Delta t} \sim 43 \text{ arcsec/century} \)

6. Today. Gravitational Red-shift experiment and application to GPS.