Time Dilation

- The speed of light is constant in all frames

Time it take for person sitting still to

$$
\Delta \tau=\frac{2 d}{c}
$$ throw and catch the light

\uparrow proper time: time measured at the same position at spas
For an observer moving to the left with speed V

$$
\frac{\text { Total Distance }}{\text { Total time }}=\text { speed of Light }=C
$$

$$
\frac{2 \sqrt{d^{2}+(v \Delta t / 2)^{2}}}{\Delta t}=C \quad \text { Solver For } \Delta t \text { : }
$$

$$
\sqrt{(2 d)^{2}+(v \Delta t)^{2}}=c \Delta t
$$

Skip this algebra, after

$$
(2 d)^{2}+(v \Delta t)^{2}=c^{2} s^{2}
$$ saying solver for Lt jump to boxed formula.

$$
\begin{aligned}
& \left(\frac{2 d}{c}\right)^{2}+\left(\frac{v}{c}\right)^{2} \Delta t^{2}-\Delta t^{2} \\
& \left(\frac{2 d}{c}\right)^{2}=\left[1-\left(\frac{v}{c}\right)^{2}\right](\Delta t)^{2} \\
& \frac{\left(\frac{2 d}{c}\right)^{2}}{\left(1-\left(\frac{v}{c}\right)^{2}\right)^{2}}=(\Delta t)^{2} \quad \Delta t \\
& \Delta t=\left(\frac{2 d}{c}\right) \sqrt{1-(v / c)^{2}} \Rightarrow \Delta t=\frac{\tau}{\sqrt{1-(v / c)^{2}}} \\
& \text { Define } \quad \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}
\end{aligned}
$$

- Moving clocks run slow

$$
\Delta t=\gamma \Delta \tau
$$

time interval for someone time for someone on on train ground

Length Contraction
Consider a Ruler stick:
ground α_{0}.

$$
\begin{gathered}
\circ \\
\times
\end{gathered}
$$

proper length $=$ length as measured by someone at rest w.r.t. the ruler stick

Consider the ground observer he sees that the space-ship takes a time to complete his journey

$$
\Delta t=\frac{L_{p}}{V} \quad \Delta \tau_{s}=\frac{L_{v}}{v}
$$

Now $\gamma \Delta t=\frac{L_{\rho}}{V}$

Remark:

- Only those directions in the direction
$\frac{\text { Fixed Observer: }}{\text { Lp }}$
 of motion are length Contracted.
- Transverse Directions not contracted.

Mowing Observer:

$$
y \rightarrow
$$

Muon and mountain: Earth Observer

$$
v_{\text {muon }}=0.99 c
$$

- The μ decays in $2.2 \mu \mathrm{~s}$ in its own frame (a proper time)
- Ti. an observer on earth the muon decays in

$$
\begin{aligned}
& \Delta t=\gamma \Delta \tau \quad \gamma=\frac{1}{\sqrt{1-(v / \mathrm{c})^{2}}}=7.1 \\
& \Delta t=(7.1)(2.2 \mathrm{ss}) \approx 16 \mu \mathrm{~s}
\end{aligned}
$$

- The distance travelled is $d=v \Delta t \approx c \cdot 16 \mu s=4 / 7 * 00$ the muon reaches the bottom!
Muon and mountain: M敗 Observer
(6

$$
L=L_{0} / \gamma=\frac{4700 m}{7.1}=65
$$

The blow says $x=\Delta \tau \vee$ amount of mow $\begin{gathered}\text { passes } \\ \text { mim }\end{gathered}$

$$
x=2.2 \mathrm{~ns}(0.99 \mathrm{c}) \simeq 650 \mathrm{~m}
$$

