1 Series of functions

In each case we are expanding a function in a complete set of eigen-functions
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We require that the fucntions are complete (in the space of functions which satisfy the same boundary
conditions as F') and orthogonal
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In what follows we show the eigen-function in square brackets
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(b) A square interable function in one dimension has a fourier transform
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(¢) A regular function on the sphere (,$) can be expanded in spherical harmonics
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(d) A function, F(p) on the half line p = [0, 00], which vanishes like p™ as p — 0 can be expanded in

Bessel functions. This is known as a Hankel transform and arises in cylindrical coordinates
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