
Problem 1. Fourier Transforms

(a) Write down Maxwell equations in Fourier space, i.e. writing E and B, ⇢ and j as
Fourier transforms
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write down the equations of motion for E(!,k) and B(!,k).

(b) The screened Coulomb potential, known as the Yukawa potential is
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with m > 0. What is V (k) =
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V (r)? What is the limit of V (k) as m ! 0?

(c) What is the Poisson equation in Fourier space:
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(d) Use Fourier transforms to heuristically explain why if

r⇥E(x) = 0 (7)

then E can be written as the gradient of a scalar function E = �r'

Problem 2. Zangwill 1.4: Vector Derivative Identities (optional)

Problem 3. An non-uniformly charged spherical shell

A hollow spherical shell of radius R is made of insulating material, and has a charge per unit
area:
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(a) Find the potential for r < R and r > R.

(b) From the asymptotics of your solution, determine the dipole moment p in Cartesian
coordinates p = p
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(c) Determine the electric field inside the sphere in Cartesian coordinates.

1






