
Problem 1. Energy during a burst of deceleration

A particle of charge e moves at constant velocity, βc, for t < 0. During the short time
interval, 0 < t < ∆t its velocity remains in the same direction but its speed decreases
linearly in time to zero. For t > ∆t, the particle remains at rest.

(a) Show that the radiant energy emitted per unit solid angle is

dW

dΩ
=

e2β2

64π2c∆t

(2− β cos θ) [1 + (1− β cos θ)2] sin2 θ

(1− β cos θ)4
(1)

(b) In the limit γ � 1, show that the angular distribution can be expressed as

dW

dξ
' e2β2

4π c

γ4

∆t

ξ

(1 + ξ)4
(2)

where ξ = (γθ)2.

(c) Show for γ � 1 that the total energy radiated is in agreement with the relativistic
generalization of the Larmour formula.

Problem 2. An oscillator radiating

(a) Determine the time averaged power radiated per unit sold angle for a non-relativistic
charge moving along the z-axis with instantaneous position, z(T ) = H cos(ωoT ).

(b) Now consider relativistic charge executing simple harmonic motion. Show that the
instantaneous power radiated per unit solid angle is

dP (T )

dΩ
=

dW

dT dΩ
=

e2

16π2

cβ4

H2

sin2 θ cos2(ωoT )

(1 + β cos Θ sinωoT )5
(3)

Here β = ωoH/c and γ = 1/
√

1− β2

(c) In the relativistic limit the power radiated is dominated by the energy radiated during
a short time interval around ωoT = π/2, 3π/2, 5π/2, . . .. Explain why. Where does
the outgoing radiation point at these times.

(d) Let ∆T denote the time deviation from one of this discrete times, e.g. T = 3π/(2ωo) +
∆T . Show that close to one of these time moments:

dP (∆T )

dΩ
=

dW

d∆T dΩ
' 2e2

π2

cβ4

H2
γ6

(γωo∆T )2(γθ)2

(1 + (γθ)2 + (γωo∆T )2)5
(4)

(e) By integrating the results of the previous part over the ∆T of a single pulse, show that
the time averaged power is

dP (T )

dΩ
=

e2

128π2

cβ4

H2
γ5

5(γθ)2

(1 + (γθ)2)7/2
(5)

(f) Make rough sketches of the angular distribution for non-relativistic and relativistic
motion.
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Problem 3. Periodic pulses

Consider a periodic motion that repeats itself with period To. Show that the continuous
frequency spectrum becomes a discrete spectrum containing frequencies that are integral
multiples of the fundamental, ωo = 2π/To.

Let the electric field from a single pulse (or period) be E1(t), i.e. where E1(t) is non-
zero between 0 and To and vanishes elsewhere, t < 0 and t > To. Let E1(ω) be its fourier
transform.

(a) Suppose that the wave form repeats once so that two pulses are received. E2(t) consists
of the first pulse E1(t), plus a second pulse, E2(t) = E1(t) +E1(t−To). Show that the
Fourier transform and the power spectrum is

E2(ω) = E1(ω) (1 + eiωTo) |E2(ω)|2 = |E1(ω)|2 (2 + 2 cos(ωTo)) (6)

(b) Now suppose that we have n (with n odd) arranged almost symmetrically around t = 0,
i.e.

En(t) = E1(t+(n−1)To/2)+. . .+E1(t+To)+E1(t)+E1(t−To)+. . . E1(t−(n−1)To/2) ,
(7)

so that for n = 3
E3(t) = E1(t+ To) + E1(t) + E1(t− To) . (8)

Show that

En(ω) = E1(ω)
sin(nωTo/2)

sin(ωTo/2)
(9)

and

|En(ω)|2 = |E1(ω)|2
(

sin(nωTo/2)

sin(ωTo/2)

)2

(10)

(c) By taking limits of your expressions in the previous part show that after n pulses, with
n→∞, we find

En(ω) =
∑

m

E1(ωm)
2π

To
δ(ω − ωm) (11)

and

|En(ω)|2 = nTo︸︷︷︸
total time

×
∑

m

|E1(ωm)|2 2π

T 2
o

δ(ω − ωm) (12)

where ωm = 2πm/To.
Remark We have in effect shown that if we define

∆(t) ≡
∞∑

n=−∞

δ(t− nTo) . (13)

Then the Fourier transform of ∆(t) is

∆̂(ω) =
∑

n

e−iωnTo =
∑

m

2π

To
δ(ω − ωm) . (14)
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(d) Show that a general expression for the time averaged power radiated per unit solid
angle into each multipole ωm ≡ mωo is:

dPm
dΩ

=
|rE(ωm)|2
T 2
o

(15)

Or
dP̂m
dΩ

=
e2ω4

om
2

32π4c3

∣∣∣∣
∫ To
0

v(T )× n exp

[
iωm(T − n · r∗(T )

c
)

]∣∣∣∣
2

dT , (16)

Here dP̂m/dΩ is defined so that over along time period ∆T , the energy per solid angle
is

dW

dΩ
= ∆T

∞∑

m=1

dP̂m
dΩ

(17)

Also note that we are summing only over the positive values of m which is different
from how we had it in class:

dP̂m
dΩ
≡ dPm

dΩ
+
dP−m
dΩ

(18)

Problem 4. Radiation spectrum of a SHO

(a) Show that for the simple harmonic motion of a charge discussed in Problem 2 the
average power radiated per unit solid angle in the m-th harmonic is

dP̂m
dΩ

=
e2cβ2

8π2H2
m2 tan2 θ [Jm(mβ cos θ)]2 (19)

(b) Show that in the non-relativistic limit the total power radiated is all in the fundamental
and has the value

P =
e2

4π

2

3
ω4
oH

2 (20)

where H2 is the mean squared amplitude of the oscillation.

Problem 5. Physics of the relativistic stress tensor

Consider a capacitor at rest. The area of each plate is A, and the electric field between the
plates is E. The plates are orthogonal to the x−axis (see figure). The rest mass of each plate
is Mpl. The plates are kept a distance d apart by four thin columns (not shown). We assume
that each of these columns have mass Mcol, and there is a stress tensor in the columns due
to the electric attraction of the plates. (There is also a surface stress tensor in the plates
due to the electric repulsion of the charges on the plates, but you won’t need this.)

(a) Write down the expression for the energy-momentum tensor of the electromagnetic
field Θµν

em in terms of the Maxwell field strength F µν . Show that the total rest mass
Mc2 =

∫
d3rΘ00

tot of the capacitor setup is:

Mtotc
2 = 2Mplc

2 + 4Mcolc
2 +

1

2
E2Ad (21)
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Remark. In practice the field term is very small compared to the first two terms,
but we will include its effect in this problem.

(b) Determine the non-vanishing components of the electromagnetic stress tensor inte-
grated over space: ∫

d3rΘαβ
em. (22)

(Hints:
∫

Θxx
em,
∫

Θyy
em,
∫

Θzz
em,
∫

Θ00
em are non-zero. )

(c) Show that for a stationary configuration that
∫

d3rΘij
tot(r) = 0 (23)

(Hints: Explain why ∂kΘ
kj
tot = 0, and then study the expression ∂k(x

iΘkj
tot) )

(d) Determine
∫
col

Θzz
mech in the columns, and interpret your result physically by showing

the forces involved with a free body diagram.

(e) Consider now an observer in frame K who is moving in the positive z−direction with
velocity v relative to the rest frame of the capacitor. According to special relativity
the energy of the capacitor in frame K is γMc2 where γ = (1− (v/c)2)1/2.

(i) Show that the integrated electromagnetic stress tensor in frame K, Θ00
em, is

∫
d3rΘ00

em(r) =
1

2
E2Ad

√
1− (v/c)2 (24)

Here r are the boosted coordinates.

(ii) Show that the integrated mechanical stress tensor including the plates and the
columns ∫

d3rΘ00
mech(r) = γ (2Mplc

2 + 4Mcolc
2) +

1

2
E2Ad

(v/c)2√
1− (v/c)2

(25)

(iii) Use these results to compute ∫
d3rΘ00

tot(r) (26)

in frame K and comment on the result.
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