
Problem 1. Estimates

Without looking up numbers make the following estimates1. Explain qualitatively how you
arrived at your estimate from the Lienard-Wiechert potentials.

(a) The light source NSLS II at BNL circulates electrons at 3 GeV with a circumference of
792 m. (i) Estimate the energy lost per turn to radiation. (ii) Estimate the energy of
the typical photon which is emitted, and compare this energy with the energy of the
electron. (iii) Estimate the angular width of the radiation cone.

(b) The LHC at CERN circulates protons at 7 TeV with a circumference of 27 km. (i)
Estimate the energy lost per turn for a proton at the LHC. (ii) Estimate the energy a
typical photon that is emitted at the LHC due to synchrotron radiation, and compare
this to the proton energy. (iii) Estimate the angular width of the radiation cone.

Problem 2. Radiation spectrum from a damped SHO

The non-relativistic motion of a charged particle of charge e is described by a damped
harmonic oscillator

m
d2z

dt2
+mη

dz

dt
+mω2

oz = 0 (3)

where η is small, η � ωo. Also assume that ∆ω ≡ ω − ωo � ωo. Be sure to use these
approximations at all points of the clculation.

The charge is released from rest with initial amplitude z(t = 0) = H.

(a) On the x axis, far from the charge, how is the light polarized ?

(b) Estimate (i.e. don’t calculate) the energy lost per time to radiation. We will require
that the energy lost to radation is small compared to energy lost to friction. How does
this requirement constrain the dimensionful parameters of this problem: m,H, ωo, η, e, c

(c) Determine the spectrum of photons which are emitted

ω
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∣∣∣∣
ω>0

(4)

(The factor of two incorporates the contributions with ω < 0, which give an equal
contribution. Why?) Express your final result in terms of the fine structure constant
α instead of the charge (squared).

1 You really need to know these numbers to get through life:

α =
e2

4π~c
' 1

137
~c = 197 eV nm (1)

mec
2 = 0.511 MeV (half an MeV) mpc

2 = 0.938 MeV (2000 times the electron mass ) (2)

Seriously. . . they wont be given on the final and you may need them, togethewith the Bohr model estimates.
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(d) Optional – but extremely good practice for exam Integrate the results of the
previous part over frequency to determine the total energy that is emitted. Calculate
the same result by integrating the Larmour formula

P (te) =
q2

4π

2

3

a2(te)

c3
(5)

over time.

(e) Optional In part (c) you determine the frequency spectrum for ∆ω � ωo. In part
(d) you integrated over ∆ω (from −∞ . . .∞) to determine the total power. Estimate
the error made by extending this integral over the full frequency range instead of just
a narrow range around ωo. Similarly estimate the error in your approximate formula
for the acceleration.
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Problem 3. Soft bremsstrahlung during a decay

In a collision or decay that happens at location ro over an infinitessimally short time scale,
τaccel, the charged particles moving with velocity, v1,v2, . . . before the collsions and the
charged particles moving with v1′ ,v2′ , . . ., after the collision each contribute to the radiation
field. (The total radiation field is just a sum of the radiation fields from each particle.)

(a) Show that for frequencies low ω � 1/τaccel the total radiation field is

Erad(ω, r) = eiω(r−n·ro)/c

( ∑
j′ ∈ final

qj′

4πrc2

n× n× vj′

1− n · βj′
−

∑
j ∈ initial

qj
4πrc2

n× n× vj
1− n · βj

)
(6)

This generalizes the result of Lecture 46.

Hint. You may encounter an integral like∫ ∞
0

n× n× v eiωT (1−n·v/c) . (7)

To give this integral definite meaning insert a convergence factor e−ε|T | and then take
the limit ε → 0 after integration. In any real experiment the velocity v(T ) would be
cut off in time, and provide this convergence factor naturally.

(b) A neutral ωo meson of mass Mωc
2 = 784 MeV has a relatively rare decay mode ωo →

π+π−, with branching fraction of 1.53%. (98.5% of the time it decays to something
else.) It has another rare decay mode ωo → e+e− with branching ratio 7.28× 10−3%.
(These are pretty rare decays for the ωo meson – most of the time it decays to π+π−π0

with a branching fraction of 89.2%). The mass of a pion is mc2 = 140 MeV, while the
electron mass is . . .

(i) Compute the frequency spectrum of the soft electromagnetic radiation per solid
angle that accompanies both of these decay modes

dI

dωdΩ
= 2

dW

dωdΩ

∣∣∣∣
ω>0

, (8)

Describe your result qualitatively.

(ii) Show that for both of these decay modes the frequency spectrum of radiated
energy at low frequencies is

dI

dω
=

e2

4π2c

[(
1 + β2

β

)
ln

1 + β

1− β
− 2

]
' e2

π2c

[
ln

(
Mω

m

)
− 1

2

]
(9)

where Mω is the mass of the ωo meson, m is the mass of one of the decay products,
and β is the velocity/c of the decay products.

(iii) Roughly evaluate the total energy radiated in each decay by integrating the spec-
trum up to a point where the photon’s momentum is half of the momentum of
the decay products. (Beyond this point the recoil of the charged decay products
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would need to be considered. This lies outside of classical electrodynamics. In
classical electrodynamics we specify the currents and solve for the fields.). You
should find in a leading log(Mω/m) approximation

Irough

Mωc2
' α

π
log

(
Mω

m

)
(10)

Using this rough evaluation, what fraction of the rest energy of the ωo is carried
away by soft radiation in the two decay modes

4



Problem 4. Thomson Scattering

We will do this in class. It is very important, especially for astrophysics.

(a) Polarized light with linear polarization vector εo, is propagating in the z-direction with
electric field amplitude Eo and is incident upon an electron at rest. Assume that ~ω
is much less than the electron mass mec

2. Show that the time average power radiated
into light with polarization ε is〈

dPpol

dΩ

〉
= 1

2
cE2

o

(
e2

4πmec2

)2

|ε∗ · εo|2 (11)

where ε is the polarization of the outgoing radiation, i.e. n · ε = z · εo = 0.

(b) Show that the time averaged power radiated into light of any polarization by an incident
beam with polarization εo is〈

dPunpol

dΩ

〉
= 1

2
cE2

o

(
e2

4πmec2

)2

|n× εo|2 (12)

(c) Show that the polarized and unpolarized cross sections for incident light with polar-
ization εo are

dσpol

dΩ
= r2

e |ε∗ · εo|
2 (13)

and
dσunpol

dΩ
= r2

e |n× εo|
2 , (14)

respectively. Here the classical electromagnetic radius is

re =
e2

(4π)mec2
(15)

(d) By sticking in appropriate powers of ~, show that re is 137 times smaller than the
compton wavelength, λ̄C = ~/mec. Show that re is (137)2 times smaller than the Bohr
radius.

Remark: A heuristic way to understand why re is smaller than the “the size of an
electron” , ~/mec, is that the cross section is the cross-sectional area ∝ (~/mec)

2 of the
electron times the probability that the light will actually interact with the electron,
wich is α2.

(e) Now consider unpolarized incident light (light which is equally likely to be polarized
in the x or y directions). Let the radiation be scattered at an angle θ in the xz plane,
where n · no = cos θ. Depending on the scattering angle θ, the outgoing light will be
partially polarized in the xz plane, or out of the xz plane (i.e. in the y direction).

Show that the cross-section for unpolarized light to produce in-plane polarized light is

dσ‖
dΩ

= 1
2
r2
e cos2 θ (16)
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while the cross-section to produce out-of-plane polarized light is

dσ⊥
dΩ

= 1
2
r2
e (17)

And conclude that the cross-section for unpolarized light to produce light of any po-
larization is

dσ

dΩ
= r2

e

1 + cos2 θ

2
(18)

(f) By using the results of this problem and integrating over angles, or appealing directly
to the Larmour formula, determine the total electromagnetic cross section for light
electron scattering. This is known as the Thomson cross section:

σT =
8π

3
r2
e (19)

Evaluate the Thomson cross section numerically, without looking up any numbers.

(g) Plot the polarization asymmetry
dσ‖
dΩ
− dσ⊥

dΩ
dσ‖
dΩ

+ dσ⊥
dΩ

(20)

as a function of scattering angle θ.
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Problem 5. Scattering from a perfectly conducting sphere

Consider light of wavenumber k scattering off a perfectly conducting sphere of radius a.
Assume that ka � 1 and that the skin depth is much less than the size of the sphere The
incident light propagates along the z-direction.

(a) Optional Show that the external field E = Eoe
−iωtεo and H = Hoe

−iωtn× εo induces
a time dependent electric and magnetic dipole moment :

p = 4πa3Eoe
−iωt m = −2πa3Hoe

−iωt (21)

For the magnetic case you can look at the solutions to homework 5 (pages 2-6). For
the electric case you can look at lecture 3.

(b) By computing the radiated power from the time dependent magnetic and electric
dipole, show that for arbitrary initial polarization εo of the incoming light, the scatter-
ing cross section off the sphere, summed over outgoing polarizations is given by:

dσ

dΩ
(εo,no,n) = k4a6

[
5

4
− |εo · n|2 −

1

4
|n · (no × εo)|2 − no · n

]
(22)

where no and n are the directions of the incident and scattered radiations, while εo is
the (perhaps complex) unit polarization vector of the incident radiation (ε∗o · εo = 1;
no · εo = 0).

Hint: as an intermediate step in the calculation show that

Erad =
−ω2

4πc2

e−iωt+kr

r
Do

[
−εo + n(n · εo)− 1

2
n× (no × εo)

]
(23)

where Do = 4πa3Eo. Then square this result (repeating to yourself like the the little
engine . . . “I think I can, I think I can, think I can”) using the front cover of Jackson.

(c) If the incident radiation is linearly polarized, show that the cross section is

dσ

dΩ
(εo,no,n) = k4a6

[
5

8
(1 + cos2 θ)− cos θ − 3

8
sin2 θ cos 2φ

]
(24)

where n · no = cos θ and the azimuthal angle φ is measured from the direction of the
linear polarization.

(d) What is the ratio of the scattered intensities at θ = π/2, φ = 0 and θ = π/2, φ = π/2?
Explain physically in terms of the induced multipoles and their radiation patterns.
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