
Problem 1. Spherical tensors

(a) Consider the rotation by angle φo around the z axis:

R =

 cosφo sinφo 0
− sinφo cosφo 0

0 0 1

 . (1)

Consider a vector and a symmetric traceless tensor (take pi and Θij for definiteness)
Label the components of a symmetric traceless tensor asΘxx Θxy Θxz

Θxy Θyy Θyz

Θxz Θyz Θzz

 =

Θ̄ + ∆Θ Θxy Θxz

Θyx Θ̄−∆Θ Θyz

Θxz Θyz Θzz

 , (2)

so Θ̄ = (Θxx + Θyy)/2 = −Θzz/2 and ∆Θ = (Θxx − Θyy)/2. In terms of this pa-
rameterization of Θij determine explicitly how the elements of pi and Θij transform
under the azimuthal rotation, i.e. fill in this table according to the rule pi = Ri

jp
j and

Θij = Ri
`R

j
mΘ`m (You can use Mathematica and show as little or as much work as

you like)

pz = . . . (3)

px = . . . (4)

py = . . . (5)

Θzz = . . . (6)

Θ̄ = . . . (7)

Θxz = . . . (8)

Θyz = . . . (9)

∆Θ = . . . (10)

Θxy = . . . (11)

(b) Use these results to show that certain combinations of components transform simply.
Fill in this table (You can use Mathematica and show as little or as much work as you
like)

pz = . . . (12)

(px ± ipy) = . . . (13)

Θzz = (14)

(Θxz ± iΘyz) = . . . (15)

(∆Θ± iΘxy) = . . . (16)

Remark: The dipole combinations (pz and px± ipy) are proportional to the spherical
multipoles q`m = q10, q1±1, and the quadrupole combinations are proportional to the
spherical multipoles q`m = q20, q2±1, q2±2. The exact relation was handed out in class.

(c) Examine the vector r̂i and symmetric traceless tensor (r̂r)ij ≡ r̂ir̂j − 1
3
δij. By compar-

ison with Wikipedia or other source show that

r̂z ∝ Y10(θ, φ) (17)

r̂x ± ir̂y ∝ ∓ Y1±1(θ, φ) (18)
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and

(r̂r)zz ∝ Y20(θ, φ) (19)

(r̂r)xz ± i(r̂r)yz ∝ ∓ Y2±1(θ, φ) (20)

(∆r̂r ± i(r̂r)xy) ∝ Y2±2(θ, φ) (21)

Remarks: The overall (tedious) sign in the proportionality constant in these ex-
pressions is known as the Condon and Shortly phase convention. This problem il-
lustrates the general pattern – the symmetric traceless third order tensor (r̂rr)ijk ≡
r̂ir̂j r̂k − 1

5
(δij r̂k + δjkr̂i + δkir̂j) is isomorphic with Y3m, the symmetric traceless tensor

(r̂rrr)ijkl ≡
[
r̂ir̂j r̂krl − traces

]
is isomorphic with Y4m etc.
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Problem 2. Tensor decomposition

(a) Consider a tensor T ij, and define the symmetric and anti-symmetric components

T ijS =1
2

(
T ij + T ji

)
(22)

T ijA =1
2

(
T ij − T ji

)
(23)

so that T ij = T ijS + T ijA . Show that the symmetric and anti-symmetric components
don’t mix under rotation

TS
ij =Ri

`R
j
mT

`m
S (24)

TA
ij =Ri

`R
j
mT

`m
A (25)

This means that I don’t need to know TA if I want to find TS in a rotated coordinate
system.

Remarks: We say that the general rank two tensor is reducable to T ij = T ijS + T ijA
into two tensors that dont mix under rotation

(b) You should recognize that an antisymmetric tensor is isomorphic to a vector

Vi ≡ 1
2
εijkT

jk
A (26)

Explain the identity εijkε`mk = δi`δ
j
m − δ

j
`δ
i
m and use this to show

T ijA = εijkVk (27)

Remark: In matrix form this reads

TA =

 0 Vz −Vy
−Vz 0 Vx
Vy −Vx 0

 (28)

(c) Using the Einstein summation convention, show that the trace of a symmetric tensor
is rotationally invariant

T ii ≡ T ii (29)

and that
◦
T ijS ≡ T ij − 1

3
δijT `` (30)

is traceless.

Remark: A symmetric tensor is therefore reducable to a symmetric traceless tensor
and a scalar times δij.

T ijS =
◦
T ijS + 1

3
δijT `` where

◦
T ijS ≡ T ijS − 1

3
T ``δ

ij (31)

I don’t need to know T `` in order to compute
◦
T ijS = Ri

`R
j
m

◦
T `mS
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Remarks: The results of this problem show that a general second rank tensor is
decomposable into irreducable components

T ij =
◦
T ijS + εijkVk + 1

3
T ``δ

ij (32)

=
1

2

(
T ij + T ji − 2

3
T `` δ

ij
)

+
1

2
εijkεk`mT

`m +
1

3
T `` δ

ij (33)

No further reduction is possible. A general result is that a fully symmetric traceless
tensor is irreducable.

When this result is applied to the product of two vectors it says

EiBj =
1

2

(
EiBj +BiEj − 2

3
E ·Bδij

)
+

1

2
εijk(E ×B)k +

1

3
E ·Bδij (34)

which expresses the tensor product of two vectors as the sum of irreducable (traceless
and symmetric) tensor, a vector, and a scalar, 1⊗ 1 = 2⊕ 1⊕ 0.

More physically it says that not all of EiBj is really described by a tensor. Rather,
part of EiBj is described by the vector E × B and the scalar E · B. It is for this
reason that the tensors we work with in physics (i.e. the moment of inertia tensor, the
quadrupole tensor, the maxwell stress tensor) are symmetric and traceless.
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Problem 3. A dielectric sphere in an external field with a gradient

A dielectric sphere of radius a at the origin is placed in an external field with a constant
small gradient ∂zEz ≡ E ′o, so that the external potential is described by

ϕext(r) = −Eoz −
1

2
E ′o
(
z2 − 1

2
(x2 + y2)

)
(35)

The gradient is small since E ′oa� Eo

(a) When I first started writing this problem, I set ϕext(r) = −Eoz− 1
2
E ′oz

2, what is wrong
with this?

(b) Determine the potential both inside and outside the sphere including the first correction
due to the field gradient.

(c) Determine the surface charge induced on the sphere including the first correction due
to the field gradient.

(d) Use the stress tensor to calculate the net force on the sphere.
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Problem 4. 2D Fourier Transforms

(a) The Fourier transform of a 2D function r⊥ = (x, y) is:

F (k⊥) =

∫
d2r⊥

[
e−ik⊥·r⊥

]
F (r⊥) (36)

F (r⊥) =

∫
d2k⊥
(2π)2

[
eik⊥·r⊥

]
F (k⊥) (37)

Using the integral representation of the Bessel function

imJm(x) =
1

2π

∫ 2π

0

eix cos(φ) cos(mφ) (38)

show that for a cylindrically symmetric function that the Fourier transform is (up to
a constant) the Hankel transform, i.e.

F (k⊥) = 2π

∫ ∞
0

ρdρ [Jo(kρ)]F (ρ) (39)

F (ρ) =
1

2π

∫ ∞
0

k⊥dk⊥ [Jo(k⊥ρ)]F (k⊥) (40)

where r⊥ = (ρ cosφ, ρ sinφ).

(b) Prove the Convolution Theorem, i.e. the Fourier Transform of a product is a convolu-
tion ∫

d2r⊥ e
−i∆k⊥·r⊥ |F (r⊥)|2 =

∫
d2k⊥
(2π)2

F (k⊥)F ∗(k⊥ −∆k⊥) (41)

making liberal use of the completeness integrals∫
d2r⊥ e

−ik⊥·r⊥ = (2π)2δ2(k⊥) (42)

Remark: Setting ∆k⊥ = 0 we recover Parseval’s Theorem∫
d2r⊥|F (r⊥)|2 =

∫
d2k⊥
(2π)2

|F (k⊥)|2 (43)
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Problem 5. A point charge and a semi-infinite dielectric slab

A point charge of charge q in vacuum is at the origin ro = (0, 0, 0). It is separated from
a semi-infinite dielectric slab filling the space z > a with dielectric constant ε > 1. When
evaluating the potential for z < a, an image charge solution is found by placing an image
charge at z = 2a. When evaluating the potential for z > a we place an image charge at the
origin. The full image solution is

ϕ(r) =

{
q

4π|r| −
βq

4π|r−2aẑ| z < a
β′q

4πε|r| z > a
(44)

where β = (ε− 1)/(ε+ 1) and β′ = (2ε)/(1 + ε)

(a) Sketch a picture of the resulting electric field lines.

(b) Quite generally show that the electric field lines refract at a discontinuous interface

tan θI
εI

=
tan θII

εII
(45)

where θI and θII are the angles between the normal pointing from I to II and the electric
fields in region I and region II, and εI and εII are the dielectric constants.
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Problem 6. A Dielectric slab intervenes. (Based on Zangwill 8.4)

This problem will calculate the force between a point charge q in vacuum and a dielectric slab
with dielectric constant ε > 1. The point charge is at the origin ro = (xo, yo, zo) = (0, 0, 0),
but we will keep xo, yo, zo for clarity. The slab lies between z = a and z = a+ δ with a > 0
and has infinite extent in the x, y directions

(a) Write the free space Green function as a Fourier transform

q

4π|r − ro|
= q

∫
d2k⊥
(2π)2

eik⊥·(r⊥−ro⊥)gok⊥(zo) (46)

and show that

gk⊥(z, zo) =
e−k⊥|z−zo|

2k⊥
(47)

(b) Now consider the dielectric slab and write the potential produced by the point charge
at zo = 0 as a Fourier transform

ϕ(r⊥, z) = q

∫
d2k⊥
(2π)2

eik⊥r⊥gk⊥(z) , (48)

and determine for gk⊥(z) by solving in each region, matching across the interfaces, and
by analyzing the jump at zo. Show that for z < 0 and 0 < z < a

gk⊥(z) =

{
ekz

2k
− βek(z−2a)(1−e−2δk)

2k(1−β2e−2δk)
z < 0

e−kz

2k
− βek(z−2a)(1−e−2δk)

2k(1−β2e−2δk)
0 < z < a

(49)

where β = (ε− 1)/(ε+ 1) and we have written k = k⊥ to lighten the notation.

(c) Checks:

(i) Show that for δ → ∞ the potential for z < a is in agreement with the results of
the previous problem.

(ii) Show that when ε → ∞ (when the dielectric becomes almost metallic) you get
the right potential.

(iii) Show that when ε→ 1 (no dielectric) you get the right potential.

(d) Show that the electric potential for region z < a can be written

ϕ = ϕind +
q

4πr
(50)

where ϕind is the induced potential and is regular at r = 0. Show that the force on the
point charge is

F z = β
q2

4π(2a)2

∫ ∞
0

du
4ue−2u(1− e−2(δ/a)u)

1− β2e−2(δ/a)u
(51)

(e) (Optional.) Make a graph of the force F z/(βq2/(4π(2a)2)) versus δ/a for β = 0.1, 0.5, 0.9.
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