Appendix C of Zangwill (and Wikipedia and DLMF) provide a useful summary of the special functions involved.

1 Cartesian coordinates: sec 7.5

(a) Laplacian

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \varphi=0 \tag{1}
\end{equation*}
$$

(b) Eigen fucntions along boundary vanishing at $x=0$ and $x=a$ and $y=0$ and $y=b$

$$
\psi_{n m}(x, y)=\sin \left(\frac{n \pi x}{a}\right) \sin \left(\frac{m \pi y}{b}\right) \quad n=1 \ldots \infty \quad m=1 \ldots \infty
$$

(c) Orthogonality

$$
\int_{0}^{a} d x \int_{0}^{b} d y \psi_{n m} \psi_{n^{\prime} m^{\prime}}=\left(\frac{a}{2}\right)\left(\frac{b}{2}\right) \delta_{n n^{\prime}} \delta_{m m^{\prime}}
$$

(d) Solution

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left[A_{n m} e^{-\gamma_{n m} z}+B_{n m} e^{+\gamma_{n m} z}\right] \psi_{n m}(x, y) \tag{2}
\end{equation*}
$$

where $\gamma_{n m}=\sqrt{(n \pi / a)^{2}+(m \pi / b)^{2}}$

2 Spherical coordinates: 7.6 and 7.7

(a) Laplacian

$$
\begin{equation*}
\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \varphi=0 \tag{3}
\end{equation*}
$$

(b) Eigen fucntions along boundary θ, ϕ, regular at $\theta=0$ and $\pi, 2 \pi$ periodic in ϕ

$$
\psi_{\ell m}(\theta, \phi)=Y_{\ell m}(\theta, \phi) \quad \ell=0 \ldots \infty \quad m=-\ell \ldots \ell
$$

(c) Orthogonality:

$$
\int d \Omega Y_{\ell m}^{*}(\theta, \phi) Y_{\ell^{\prime} m^{\prime}}(\theta, \phi)=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}
$$

(d) Solution

$$
\begin{equation*}
\varphi=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left[A_{\ell m} r^{\ell}+\frac{B_{\ell m}}{r^{\ell+1}}\right] Y_{\ell m} \tag{4}
\end{equation*}
$$

(e) When there is no azimuthal dependence things simplify to

$$
\begin{equation*}
\varphi=\sum_{\ell=0}^{\infty}\left[A_{\ell} r^{\ell}+\frac{B_{\ell}}{r^{\ell+1}}\right] P_{\ell}(\cos \theta) \tag{5}
\end{equation*}
$$

where $P_{\ell}(\cos \theta)$ is the legendre polynomial, which up to a normalization if $Y_{\ell 0}(\theta, \phi)$, satisfying the orthogonality

$$
\int_{-1}^{1} d(\cos \theta) P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta)=\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}}
$$

3 Cylindrical Boundary: z, ϕ are the boundary. Sec 7.8

(a) Laplacian:

$$
\begin{equation*}
\left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \varphi=0 \tag{6}
\end{equation*}
$$

(b) Eigenfunctions along boundary z, ϕ vanishing at $z=0$ and $z=L$ and 2π periodic in ϕ

$$
\psi_{n m}(z, \phi)=\sin \left(k_{n} z\right) e^{i m \phi} \quad k_{n} \equiv \frac{n \pi}{L} \quad n=1 \ldots \infty m=-\infty \ldots \infty
$$

(c) Orthogonality:

$$
\int_{0}^{L} d z \int_{0}^{2 \pi} \psi_{n m}(z, \phi) \psi_{n m}(z, \phi)=\frac{L}{2}(2 \pi) \delta_{n n^{\prime}} \delta_{m m^{\prime}}
$$

(d) Solution:

$$
\begin{equation*}
\varphi=\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty}\left[A_{n m} I_{m}\left(k_{n} \rho\right)+B_{n m} K_{m}\left(k_{n} \rho\right)\right] \psi_{n m}(z, \phi) \tag{7}
\end{equation*}
$$

Here $I_{\nu}(x)$ and $K_{\nu}(x)$ is the modified bessel function of the first and second kinds. Note that $K_{-m}(x)=$ $K_{m}(x)$ and $I_{-m}(x)$

4 2D cylindrical coordinates: sec 7.9

(a) Laplacian:

$$
\begin{equation*}
\left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right] \varphi=0 \tag{8}
\end{equation*}
$$

(b) Eigenfunctions along boundary $\phi: 2 \pi$ periodic in ϕ

$$
\psi_{m}(\phi)=e^{i m \phi} \quad m=-\infty \ldots \infty
$$

(c) Orthogonality

$$
\begin{equation*}
\int_{0}^{2 \pi} \psi_{m}^{*}(\phi) \psi_{m^{\prime}}(\phi)=2 \pi \delta_{m m^{\prime}} \tag{9}
\end{equation*}
$$

(d) Solution

$$
\varphi=A_{0}+B_{0} \ln \rho+\sum_{m=-\infty}^{\infty}\left(A_{m} \rho^{|m|}+\frac{B_{m}}{\rho^{-|m|}}\right) \psi_{m}
$$

5 Cylindrical Boundary: ρ, ϕ are the boundary - Sec 7.8

(a) Laplacian:

$$
\begin{equation*}
\left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \varphi=0 \tag{10}
\end{equation*}
$$

(b) Eigenfunctions along boundary ρ, ϕ vanishing at $\rho=R$ and regular at $\rho=0,2 \pi$ periodic in ϕ :

$$
\psi_{m n}(\rho, \phi)=J_{m}\left(k_{m n} \rho\right) e^{i m \phi} \quad n=1 \ldots \infty m=-\infty \ldots \infty
$$

Here:

$$
\begin{equation*}
k_{m n}=\frac{x_{m n}}{R} \tag{11}
\end{equation*}
$$

where $x_{m n}$ is the n-th zero of the m-th Bessel function, e.g. the zeros of $J_{0}(x)$ are

$$
\begin{equation*}
\left(x_{01}, x_{02}, x_{03}\right)=2.40483,5.52008,8.65373 \tag{12}
\end{equation*}
$$

These are given by $x_{m n}=$ BesselZeroJ $[\mathrm{m}, \mathrm{n}]$ in Mathematica. Note also that $J_{-m}(x)=J_{m}(x)$
(c) Orthogonality:

$$
\int_{0}^{R} \rho d \rho \int_{0}^{2 \pi} \psi_{m n}(\rho, \phi) \psi_{m n}(\rho, \phi)=\left(\frac{R^{2}}{2}\left[J_{m+1}\left(k_{m n} R\right)\right]^{2}\right)(2 \pi) \delta_{n n^{\prime}} \delta_{m m^{\prime}}
$$

(d) Solution:

$$
\begin{equation*}
\varphi=\sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty}\left[A_{m n} e^{-k_{m n} z}+B_{n m} e^{k_{m n} z}\right] \psi_{m n}(\rho, \phi) \tag{13}
\end{equation*}
$$

6 Continuum Forms and Fourier and Hankel Transforms

In each case we are expanding two directions of the solution in a complete set of eigenfunctions

$$
\begin{equation*}
\langle x \mid F\rangle=\frac{1}{C_{n}} \sum_{n}\langle x \mid n\rangle\langle n \mid F\rangle, \tag{14}
\end{equation*}
$$

and solving the laplace equation to find the dependence on the third direction.
(a) For the cartesian case when a and b go to infinity. The sum becomes an integral and the sum over n and m becomes a 2D fourier transform

$$
\varphi=\int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}}\left[A\left(\boldsymbol{k}_{\perp}\right) e^{-k_{\perp} z}+B\left(\boldsymbol{k}_{\perp}\right) e^{k_{\perp} z}\right]
$$

We are using the fact that any function in the x, y plane (in particular the boundary condition $\varphi_{o}(x, y)$) can be expressed as a fourier transform pairs

$$
\begin{align*}
F(x, y) & \equiv \int \frac{d^{2} \boldsymbol{k}_{\perp}}{(2 \pi)^{2}}\left[e^{i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}}\right] F\left(k_{x}, k_{y}\right), \tag{15}\\
F\left(k_{x}, k_{y}\right) & \equiv \int d^{2} \boldsymbol{x}_{\perp}\left[e^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}}\right] F(x, y) . \tag{16}
\end{align*}
$$

(b) For the cylindrical case when L goes to ∞, the sum over n becomes an integral yielding

$$
\varphi=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \kappa}{2 \pi}\left[e^{i \kappa z} e^{i m \phi}\right]\left[A(\kappa) I_{m}(|\kappa| \rho)+B(k) K_{m}(|\kappa| \rho)\right]
$$

We are using the fact that any regular function of z and ϕ (in particular the boundary condition $\left.\varphi_{o}(z, \phi)\right)$ can be written in terms of its fourier components

$$
\begin{align*}
& F(z, \phi)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \kappa}{2 \pi}\left[e^{i \kappa z} e^{i m \phi}\right] F_{m}(\kappa) \tag{17}\\
& F_{m}(\kappa)=\int_{0}^{2 \pi} d \phi \int_{-\infty}^{\infty} d z\left[e^{-i \kappa z} e^{-i m \phi}\right] F(z, \phi) \tag{18}
\end{align*}
$$

(c) Finally for the second cylindrical case when the radius goes to infinity

$$
\begin{equation*}
\varphi=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} k d k\left[J_{m}(k \rho) e^{i m \phi}\right]\left[A(k) e^{-k z}+B(k) e^{k z}\right] \tag{19}
\end{equation*}
$$

We are using the fact that any regular cylindrical function of ρ and ϕ (in particular the boundary condition $\left.\varphi_{o}(\rho, \phi)\right)$ can be written as Hankel transform

$$
\begin{align*}
F(\rho, \phi) & =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} k d k\left[J_{m}(k \rho) e^{i m \phi}\right] F_{m}(k) \tag{20}\\
F_{m}(k) & =\int_{0}^{2 \pi} d \phi \int_{0}^{\infty} \rho d \rho\left[J_{m}(k \rho) e^{-i m \phi}\right] F(\rho, \phi) \tag{21}
\end{align*}
$$

