
1 Introduction

1.1 The maxwell equations and units: lecture 1

General Intro and Expansion in 1/c

• We use Heavyside Lorentz system of units. This is discussed in a separate note

• The Maxwell force law

F = q
(
E +

v

c
×B

)
(1.1)

• The Maxwell equations are

∇ ·E =ρ (1.2)

∇×B =
j

c
+

1

c
∂tE (1.3)

∇ ·B =0 (1.4)

∇×E =− 1

c
∂tB (1.5)

We specify the currents and solve for the fields. In media we specify a constituent relation relating the
current to the electric and magnetic fields.

• Current conservation follow by taking the divergence of the second equation

∂tρ+∇ · j = 0 (1.6)

• For a system of characteristic length L (say one meter) and characteristic time scale T (say one second),
we can expand the fields in 1/c since (L/T )/c� 1:

E =E(0) + E(1) + E(2) + . . . (1.7)

B =B(0) + B(1) + B(2) + . . . (1.8)

where each term is smaller than the next by (L/T )/c. At zeroth order we have

∇ ·E(0) =ρ (1.9)

∇×E(0) =0 (1.10)

∇ ·B(0) =0 (1.11)

∇×B(0) =0 (1.12)

These are the equations of electro statics. Note that B(0) = 0 to this order (for a field which is zero at
infinity )
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• At first order we have

∇ ·E(1) =0 (1.13)

∇×E(1) =0 ( since ∂tB
(0) = 0 ) (1.14)

∇ ·B(1) =0 (1.15)

∇×B(1) =
j

c
+

1

c
∂tE

(0) (1.16)

This is the equation of magneto statics, with the contribution of the Maxwell term computed with
electrostatics. Note that E(1) = 0



2 Electrostatics

2.1 Elementary Electrostatics : Lecture 2

Electrostatics:

(a) Fundamental Equations

∇ ·E =ρ (2.1)

∇×E =0 (2.2)

F =qE (2.3)

(b) Given the divergence theorem, we may integrate over volume of ∇ ·E = ρ and deduce Gauss Law:∫
S

E · dS = QV

which relates the flux of electric field to the enclosed charge

(c) For a point charge ρ(r) = qδ3(r − ro) and the field of a point charge

E =
q r̂ − ro

4π|r − ro|2
(2.4)

and satisfies

∇ · q r̂ − ro
4π|r − ro|2

= δ3(r − ro) (2.5)

(d) The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

E = −∇ϕ ϕ(xb)− ϕ(xa) = −
∫ b

a

E · d` (2.6)

The potential satisfies the Poisson equation

−∇2ϕ = ρ . (2.7)

The Laplace equation is just the homogeneous form of the Poisson equation

−∇2ϕ = 0. (2.8)

The next section is devoted to solving the Laplace and Poisson equations

(e) The boundary conditions of electrostatics

n · (E2 −E1) =σ (2.9)

n× (E2 −E1) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

UE =
1

2

∫
d3r ρ(r)ϕ(r) (2.11)

(g) The energy density of an electrostatic field is

uE =
1

2
E2 (2.12)

(h) Force and stress sec. 3.7.

i) The stress tensor records T ij records the force per area. It is the force in the j-th direction per
area in the i-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

niT
ij = the j-th component of the force per area, by region LEFT on region RIGHT (2.13)

ii) The total momentum density gtot (momentum per volume) is supposed to obey a conservation
law

∂tg
j
tot + ∂iT

ij = 0 ∂tg
j
tot = −∂iT ij (2.14)

Thus we interpret the force per volume f j as the (negative) divergence of the stress

f j = −∂iT ij (2.15)

iii) The stress tensor of a gas or fluid at rest is T ij = pδij where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

T ij
E = −EiEj + 1

2δ
ijE2 (2.16)

Note that I will use an opposite sign convention from Zangwill: T ij
me = −T ij

Zangwill.

v) The force on a charged object is

F j =

∫
d3r ρ(r)Ej(r) = −

∫
dS niT

ij (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area σ is related to the magnitude of the electric field. Let n be pointing from inside to outside
the metal:

E = Enn σ = En (2.18)

ii) Capacitance and the capacitance matrix and energy of system of conductors: sec 5.4 and sec 5.5.

For a single metal surface, the charge induced on the surface is proportional to the ϕ.

Q = Cϕ .

When more than one conductor is involved this is replaced by the matrix equation:

Qi =
∑
j

Cijϕj .

iii) Forces on conductors: sec 5.6. In a conductor the force per area is

F i =
1

2
σEi =

1

2
σ2
n n

i (2.19)

The one half arises because half of the surface electric field arises from σ itself, and we should not
include the self-force
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2.2 Multipole Expansion: Lectures 9,13

Spherical Multipole Expansion: Lecture 9 and sec 4.6.1

(a) Cartesian Multipole expansion sec. 4.1.1 and 4.2.

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r � L
is expanded in cartesian multipole moments

ϕ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.20)

ϕ(r) ' 1

4π

[
Qtot

r
+

p · r̂
r2

+ Θij
r̂ir̂j

r3
+ . . .

]
(2.21)

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

Qtot =

∫
d3r ρ(r) (2.22)

p =

∫
d3r ρ(r)r (2.23)

Θij =
1

2

∫
d3r ρ(r)

(
3rirj − r2δij

)
(2.24)

respectively. There are five independent components of the symmetric and traceless tensor (matrix)
Θij .

(b) Spherical multipoles. To determine the potential far from the charge we we determine the potential to
be

ϕ(r) =

∫
d3ro

ρ(ro)

4π|r − ro|
(2.25)

=

∞∑
`=0

∑̀
m=−`

q`m
2`+ 1

Y`m(θ, φ)

r`+1
(2.26)

You should feel comfortable deriving this from Eq. (2.72)

Now we characterize the charge distribution by spherical multipole moments:

q`m =

∫
d3ro ρ(ro)

[
r`o Y

∗
`m(θo, φo)

]
(2.27)

The Book defines A`m = 4πqlm/(2`+ 1)

(c) For an azimuthally symmetric distribution only q`0 are non-zero, the equations can be simplified using
Y`0 =

√
(2`+ 1)/4πP`(cos θ) to

ϕ(r, θ) =

∞∑
`=0

a`
P`(cos θ)

r`+1
(2.28)

(d) There is a one to one relation between the cartesian and spherical forms

px, py, pz ↔ q11, q10, q1−1 (2.29)

Θzz,Θxx −Θyy,Θxy,Θzx,Θzy ↔ q22, q21, q20, q2−1, q2−2 (2.30)

which can be found by equating Eq. (2.25) and Eq. (2.20) using

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) (2.31)
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Forces and energy of a small charge distribution in an external field

(a) Given an external field ϕ(r) we want to determine the energy of a charge distribution ρ(r) in this
external field. The potential energy of the charge distribution is

UE = Qtotϕ(ro)− p ·E(ro)− 1

3
Θij∂iEj(ro) + . . . (2.32)

where ro is a chosen point in the charge distribution and the Qtot,p,Θ
ij are the multipole moments

around that point (see below).

The multipoles are defined around the point ro on the small body:

Qtot =

∫
d3r ρ(r) (2.33)

p =

∫
d3r ρ(r) δr (2.34)

Θij =
1

2

∫
d3r ρ(r)

(
3 δri δrj − δr2 δij

)
(2.35)

where δr = r − ro

(b) The force on a charged object can be found by differentiating the energy

F = −∇ro
UE(ro) (2.36)

For a dipole this reads
F = (p · ∇)E (2.37)
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