1 Introduction

1.1 The maxwell equations and units: lecture 1

General Intro and Expansion in 1/c

e We use Heavyside Lorentz system of units. This is discussed in a separate note

e The Maxwell force law

v
F:q(E—i—ExB) (1.1)
e The Maxwell equations are
V-E =p (1.2)
J 1
VxB==+-0F (1.3)
c ¢
V-B =0 (1.4)
1
VxE=-— EatB (1.5)

We specify the currents and solve for the fields. In media we specify a constituent relation relating the
current to the electric and magnetic fields.

e Current conservation follow by taking the divergence of the second equation

Op+V-j=0 (1.6)

e For a system of characteristic length L (say one meter) and characteristic time scale T (say one second),
we can expand the fields in 1/c¢ since (L/T)/c < 1:

E=E© +EY + E® | (1.7)
B=B® +BW 4+ B® 4 | (1.8)

where each term is smaller than the next by (L/T')/c. At zeroth order we have

v-E® =) (1.9)
VxE® =0 (1.10)
v-B® = (1.11)
V x B =0 (1.12)

These are the equations of electro statics. Note that B(®) = 0 to this order (for a field which is zero at
infinity )
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e At first order we have

vV-EY =0 (1.13)
V x EM =0 ( since ; B(®) =0 ) (1.14)
v.-BW =0 (1.15)
Vv x BM :% + %&E(O) (1.16)

This is the equation of magneto statics, with the contribution of the Maxwell term computed with
electrostatics. Note that E) =0
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Electrostatics

2.1

Elementary Electrostatics : Lecture 2

Electrostatics:

(a)

(b)

Fundamental Equations

V-E=p (2.1)
V x E =0
F =qF

Given the divergence theorem, we may integrate over volume of V- E = p and deduce Gauss Law:

/SE-dS:QV

which relates the flux of electric field to the enclosed charge

For a point charge p(r) = ¢6*(r — r,) and the field of a point charge

—

qr —To
= 2 2.4
Art|r — 7, |? (24)
and satisfies .
qr — 7, 3
. =&8(r—r, 2.5
Ar|r — 7,2 (r=7o) (25)

The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

Bo Ve o)) = [ Ba (26)
The potential satisfies the Poisson equation
~Vip=p. (2.7)
The Laplace equation is just the homogeneous form of the Poisson equation
- Vip=0. (2.8)
The next section is devoted to solving the Laplace and Poisson equations
The boundary conditions of electrostatics
n-(Ey— Ep) =0 (2.9)
n x (Ey — E;) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

1
Us =5 [ plr)elr) (2.11)
(g) The energy density of an electrostatic field is
1
ug = 5E2 (2.12)

(h) Force and stress sec. 3.7.

i) The stress tensor records 7% records the force per area. It is the force in the j-th direction per
area in the i-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT — (2.13)

ii) The total momentum density g;,, (momentum per volume) is supposed to obey a conservation

law _ - . B
gy + 0T =0 Dygly = —OTY (2.14)

Thus we interpret the force per volume f7 as the (negative) divergence of the stress
fl=-o,1 (2.15)

iii) The stress tensor of a gas or fluid at rest is T% = pd*/ where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

Ty = -E'E + 16 E? (2.16)
Note that I will use an opposite sign convention from Zangwill: T, = —Téfm qwill”

v) The force on a charged object is
Fi= / & p(r) B (1) = — / 4 n, T (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area o is related to the magnitude of the electric field. Let n be pointing from inside to outside

the metal:
E=FEn oc=F, (2.18)

ii) Capacitance and the capacitance matrix and energy of system of conductors: sec 5.4 and sec 5.5.
For a single metal surface, the charge induced on the surface is proportional to the ¢.

Q=Cop.

When more than one conductor is involved this is replaced by the matrix equation:
Qi = Z Cijoj -
J

iii) Forces on conductors: sec 5.6. In a conductor the force per area is

The one half arises because half of the surface electric field arises from o itself, and we should not
include the self-force



2.2. MULTIPOLE EXPANSION: LECTURES 9,13 )

2.2

Multipole Expansion: Lectures 9,13

Spherical Multipole Expansion: Lecture 9 and sec 4.6.1

(a)

Cartesian Multipole expansion sec. 4.1.1 and 4.2.

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r > L
is expanded in cartesian multipole moments

p(r
dr, 70 2.20
/ “4z|r — 1| (2:20)

1 Qtot b r "AJ"AQJ
~— i e 2.21
o(r) M[ S Oyt (2:21)

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

Qrot = / d*r p(r) (2.22)
/ d®r p(r (2.23)
Gij 2 /dST p( ) (37‘17"]‘ — 7’251']') (224)

respectively. There are five independent components of the symmetric and traceless tensor (matrix)
;.

Spherical multipoles. To determine the potential far from the charge we we determine the potential to
be

o(r) = / d?’rOMPT(r”)ro (2.25)
o] £
Z Z qem Yéf:efl(ls) (226)
=0 m=—~¢

You should feel comfortable deriving this from Eq. (2.72)

Now we characterize the charge distribution by spherical multipole moments:

Gem = / 01y p(10) [ Y7 (Bor 60)] (2.27)

The Book defines Ay, = 4mqrn, /(20 + 1)

For an azimuthally symmetric distribution only gy are non-zero, the equations can be simplified using

Yo = /(204 1)/47 Py(cos 0) to

o0
Py(cosb)
3 (2.28)
There is a one to one relation between the cartesian and spherical forms

Pz, Dy; Pz < 411,410,911 (2.29)
6227 @mm - ny7 @my; @zm Gzy > 22,421,920, 92—1,G2—2 (230)

which can be found by equating Eq. (2.25) and Eq. (2.20) using

7 = (sin @ cos ¢, sin @ sin ¢, cos 0) (2.31)
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Forces and energy of a small charge distribution in an external field
(a) Given an external field p(r) we want to determine the energy of a charge distribution p(r) in this
external field. The potential energy of the charge distribution is
1 .
Ug = Qiotp(ro) —p- E(1r,) — g@”aiEj(ro) +... (2.32)

where 7, is a chosen point in the charge distribution and the Qio, p, ©¥ are the multipole moments
around that point (see below).

The multipoles are defined around the point r, on the small body:

Qrot Z/dgrp(v“) (2.33)
p= /dgrp(r) or (2.34)
@ij :% /dgT ,O(T') (3 or; 57’j —or? 61J) (235)

where ér =r —r,
(b) The force on a charged object can be found by differentiating the energy

F=-V, Ug(r,) (2.36)

For a dipole this reads
F=(p-V)E (2.37)
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