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2.3 Solving the Laplace Equation by Separation: Lecture 3,4,5

A summary of separation of variables in different coordinate systems is given in Appendix ?? and Ap-
pendix A.2.

Solving the Laplace equation: Chapter 7

Sec 7.1 to 7.9: We use a technique of separation of variables in different coordinate systems. The technique
of separation of variables is best illustrated by example. For instance consider a potential in a cylindrical

L

z = 0

ϕ(ρ = R, z) = ϕo(z)

z = L

ϕ = 0

ϕ = 0

Figure 2.1: A cylinder used to illustrate separation of vars

geometry. The potential ϕ(ρ, z) is specified at a given radius R to be ϕo(z).

(a) We look for solutions of the separated form

ϕ = R(ρ)︸ ︷︷ ︸
⊥ to surf

Z(z)︸ ︷︷ ︸
‖ to surf

(2.38)

Leading to the two equations [
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+ k2

]
Rk(ρ) =0 (2.39)

−∂2Zk
∂z2

=k2Zk (2.40)

(b) It is best to analyze the parallel equations first which are all of the form of a Sturm Louiville eigenvalue
equation, determining the eigen-functions Zk and the eigenvalues (or separation constants) k. For the
problem at hand

Zk = Ak cos kz +Bk sin kz (2.41)

is the general solution. In order to satisfy the boundary condition Zk(0) = Zk(L) = 0, we must have
Ak = 0 and k = nπ/L, leading to

Zk = Bn sin(knz) kn =
nπ

L
n = 1, 2, . . . (2.42)

Thus the parallel directions determine both the functions and the separation constants

(c) The perpendicular equations are solved with a specified k. These equations do not usually constrain
the separation constant. The general solution is

Rk(ρ) = AI0(kρ) +BK0(kρ) (2.43)
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(d) Finally the generall solution is a sum over the eigen-functions times the perpedicular solution

ϕ =
∑
n

sin knz [AkI0(knρ) +BkK0(knρ)] (2.44)

Since the eigen-fcns are complete and orthogonal we will a always be able to adjust the constants Ak
and Bk to obtain the boundary condition at ρ = R

Solving the separated equations

After separating variables, all of the equations we wil study can be written in Sturm Louiville form:[
−d
dx

p(x)
d

dx
+ q(x)

]
y(x) = λr(x)y(x) (2.45)

where p(x) and r(x) are postive definite fcns.

(a) If boundary conditions are specified at endpoints a and b then the problem becomes an eigen-value
equation. Only certain values of λn are allowed and the functions are uniquely determined up to a
constant [

−d
dx

p(x)
d

dx
+ q(x)

]
ψn(x) = λnr(x)ψn(x) (2.46)

The parallel equations will have this form, see Eq. (2.41) and Eq. (2.42) and notice how the boundary
conditions at a = 0 and b = L fixed the value of kn.

(b) The resulting eigenfunctions are complete and orthogonal with respect to the weight r(x)∫ b

a

dx r(x)ψ∗n(x)ψm(x) = 0 n 6= m (2.47)

where a and b are the endpoints where the boundary conditions are specified.

(c) Given two independent solutions to the differential equation y1(x) a and y2(x) (not necessarily eigen-
fcns which since e-fcns also satisfy the boundary conditions at a and b), The wronskian times p(x) is
constant.

p(x) [y1(x)y′2(x)− y2(x)y′1(x)] = const (2.48)

This usually amounts to a statement of Gauss Law. For Bessels equation this means that

kρ [I0(kρ)K ′0(kρ)−K0(kρ)I ′0(kρ)] = const (2.49)

Solving the separated equations with δ function source terms

(a) We will also need to know the green function of the one dimensional equation[
−d
dx

p(x)
d

dx
+ q(x)

]
g(x, xo) = δ(x− xo) (2.50)

The Green function for such 1D equations is based on knowing two homogeneous solutions yout(x) and
yin(x), where yout(x) satisfies the boundary conditions for x > xo, and yin(x) satisfies the boundary
conditions for x < xo.

The Green function is continuous but has discontinuous derivatives. Since we know the solutions
outside and inside it takes the form:

G(x, xo) =C [yout(x)yin(xo)θ(x− xo) + yin(x)yout(xo)θ(xo − x)] (2.51)

≡Cyout(x>)yin(x<) (2.52)
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where C is a constant determined by integrating the equation, Eq. (2.50), across the delta function.
In the second line we use the common (but somewhat confusing notation)

x> ≡the greater of x and xo (2.53)

x< ≡the smaller of x and xo (2.54)

which makes the second line mean the same as the first line.

Integrating from x = xo − ε to x = xo + ε we find the jump condition which enters in many problems:

−p(x)
dg

dx

∣∣∣∣
xo+ε

+ p(x)
dg

dx

∣∣∣∣
xo−ε

= 1 , (2.55)

which can be used to find C.

(b) In fact the jump condition will always involve the Wronskian of the two solutions. Substituting
Eq. (2.51) into Eq. (2.55) we see that C = 1/(p(xo)W (xo))

G(x, xo) =
[yout(x)yin(xo)θ(x− xo) + yin(x)yout(xo)θ(xo − x)]

p(xo)W (xo)
(2.56)

≡yout(x>)yin(x<)

p(xo)W (xo)
(2.57)

where W (xo) = yout(xo)y
′
in(xo) − yin(xo)y

′
out(xo) is the Wronskian. Note that the denominator

p(xo)W (xo) is constant and is independent of xo.
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2.4 Green functions and the Poisson equation: Lectures 4,6,8,9:

Green Functions and the Poisson equation: Chapter 8

(a) sec 8.4 The Dirichlet Green function satisfies the Poisson equation with delta-function charge

−∇2GD(r, ro) = δ3(r − ro) (2.58)

and vanishes on the boundary. It is the potential at r due to a point charge (with unit charge) at ro
The simplest free space green function is just the point charge solution

GD =
1

4π|r − ro|
(2.59)

In two dimensions the Green function is

GD =
−1

2π
log |r − ro| (2.60)

which is the potential from a line of charge with charge density λ = 1

(b) sec 8.4.1. The Poisson equation or the boundary value problem of the Laplace equation can be solved
once the Dirichlet Green function is known. By examining the Wronskian of the Green function and
the solution of interest we showed that

ϕ(r) =

∫
V

d3roGD(r, ro)ρ(ro)−
∫
dSo no · ∇roGD(r, ro)ϕ(ro) (2.61)

where no is the outward normal

(c) sec: 8.3. A useful technique to find a Green function is image charges. You should know the image
charge green functions

i) A plane in 1D and 2D (class)

ii) A sphere (homework)

iii) A cylinder (homework + recitation)

(d) sec: 8.5.3: one technique to find the green function is to expand the δ3(r−ro) in eigenfunctions. For a
complete set of normalized eigen functions of the Laplace operator satisfying the boundary conditions,
i.e.

−∇2ψn = λnψn (2.62)

and ∑
n

ψn(r)ψ∗n(ro) = δ3(r − ro) (2.63)

The Green fcn can be written:

GD =
∑
n

ψn(r)ψ∗n(ro)

λn
(2.64)

The primary use of this type of expansion is to explain eqs. like

1

4π|r − ro|
=

∫
d3k

(2π)3
eik·(r−ro)

k2
(2.65)

(e) sec: 8.5.4 and 8.5.5, method of direct integration: This is best illustrated by example. Pick two
dimensions of a surface (say θ, φ). The method is motivated by the fact that δ3(r− ro) can be written
as a sum

δ3(r − ro) =
1

r2
δ(r − ro)δ(cos θ − cos θo)δ(φ− φo) =

1

r2
δ(r − ro)

∑
`m

Y`m(θ, φ)Y ∗`m(θo, φo) (2.66)
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Thus the green function is can also be written as

G(r, ro) =

∞∑
`=0

∑̀
−`

g`m(r, ro)Y`m(θ, φ)Y ∗`m(θo, φo) (2.67)

leading to an equation for g`m(r, ro)[
− 1

r2
∂

∂r
r2
∂

∂r
+
`(`+ 1)

r2

]
g`m(r, ro) =

1

r2
δ(r − ro) (2.68)

This remaining equation in 1D is then solved for the green function following the strategy outlined
above in Sect. ?? (see Eq. (2.50)). This depends on the boundary conditions.

Similar expressions can be derived in other coordinates. For instance, using the result in cylindrical
coords

δ3(r− ro) =
1

ρ
δ(ρ− ρo)δ(z− zo)δ(φ−φo) =

1

ρ
δ(ρ− ρo)

1

2π

∞∑
m=−∞

∫ ∞
−∞

dκ

2π

[
eim(φ−φo)eiκ(z−zo)

]
(2.69)

Leading to

G(r, ro) =
1

2π

∞∑
m=−∞

∫ ∞
−∞

dκ

2π

[
eim(φ−φo)eiκ(z−zo

]
gmκ(ρ, ρo) (2.70)

where [
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+ κ2 +

m2

ρ2

]
gmκ(ρ, ρo) =

1

ρ
δ(ρ− ρo) (2.71)

(f) sec 8.5.4: For free space, the two solutions to Eq. (2.68) are yout(r) = 1/r`+1 and yin(r) = r`. Then
the free space Green fcn can be written

1

4π|r − ro|
=

∞∑
`=0

∑̀
−`

[Y`m(θ, φ)Y ∗`m(θo, φo)]
1

2`+ 1

r`<
r`+1
>

(2.72)

Some useful identities can be derived from Eq. (2.72):

i) The generating function of Legendre Polynomials is found by setting ro = ẑ and r < 1 with
Y`0 =

√
(2`+ 1)/4πP`(cos θ)

1√
1 + r2 − 2r cos θ

=

∞∑
`=0

r`P`(cos θ) (2.73)

ii) The spherical harmonic addition theorem which we find by writing by setting ro = 1 and r < 1
and using 1/|r − ro| = 1/

√
1 + r2 − 2rr̂ · r̂o

P`(r̂ · r̂o) =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, φ)Y ∗`m(θoφo) (2.74)

where r̂ · r̂o is the cosine of the angle between the two vectors.

iii) The shell structure relation which you find by setting r̂ = r̂o

1 =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, φ)Y ∗`m(θ, φ) (2.75)

This relation is what is responsible for shell structure in the periodic table

(g) Similar expansion exists in other coordinates. e.g. in cylindrical coords yout(ρ) = Km(κρ) and yin(ρ) =
Im(κρ), leading to

1

4π|r − ro|
=

1

2π

∞∑
m=−∞

∫
dk

2π

[
eim(φ−φo)eik(z−zo)

]
Im(kρ<)Km(kρ>) (2.76)
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