
4 Ohms Law and Conduction

4.1 Steady current and Ohms Law: Lecture 17

(a) For steady currents
∇ · j = 0 (4.1)

(b) For steady currents in ohmic matter
j = σE (4.2)

(c) σ has units of 1/s. Note that in MKS units σMKS has the uninformative unit 1/ohmm:

σHL =
σMKS

εo
(4.3)

For σMKS = 1071/(ohmm) we find σ ∼ 10181/s.

(d) To find the flow of current we need to solve the electrostatics problem

−∇ · (σE) =0 (4.4)

∇×E =0 (4.5)

or for homogeneous material
− σ∇2ϕ = 0 (4.6)

We see that we are supposed to solve the Laplace equation. However the boundary conditions are
rather different.

(e) A point source of current is represented by a delta function Iδ3(r − ro). While a sink of current is
represented by a delta function of opposite sign −Iδ3(r − ro).

(f) Eq. (4.4) and Eq. (4.6) need boundary conditions. At an interface current should be conserved so

n · (j2 − j1) =0 (4.7)

or

σ2
∂ϕ2

∂n
= σ1

∂ϕ1

∂n
(4.8)

Most often this is used to say that the normal component of the Electric field at a metal-insulator
interface should be zero:

n ·E = 0 at metal-insulator interface (4.9)

(g) In general the input current (or normal derivatives of the potential) must be specified at all the bound-
aries in order to have a well posed boundary value problem that can be solved (at least numerically.)

(h) In general the input currents Ia = I1, I2, . . . on a set conductors will be will be specified, specifying
the normal derivatives on all of the surfaces. Then you solve for the potential. The voltages of a given
electrode relative to ground is Va , and you will find that Va =

∑
bRabIb. Rab is the resistance matrix.
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18 CHAPTER 4. OHMS LAW AND CONDUCTION

4.2 Basic physics of metals, Drude model of conductivity: Lecture 22

This section really lies outside of electrodynamics. But it helps to understand what is going on.

(a) The electrons in the metal under go scatterings with impurities and other defects on a time scale τc.
For copper:

τc ∼ 10−14s (4.10)

(b) A typical coulomb oscillation / orbital frequency is set by the plasma frequency

ωp =

√
ne2

m
(4.11)

For copper ωp is of order a typical quantum frequency and scales like:

ωp ∼
( 1

m

e2

a3om︸ ︷︷ ︸
spring const

)1/2
(4.12)

∼
(

27.2 eV

~

)
(4.13)

∼10−16 1/s (4.14)

In the second to last line we ignored all 4π factors and used Bohr model identities

1

2

(
e2

4πao

)
=

~2

2ma2o
= 13.6 eV (4.15)

which you can remember by noting that (minus) coulomb potential energy is twice the kinetic energy=p2/2m
and knowing pbohr = ~/ao as expected by the uncertainty principle.

(c) Since the distances between collisions are long compared to the Debroglie wavelength, and the time
between collisions is long compared to a typical inverse quantum frequency, we are justified in using
classical transport

ωpτc ∼ 100� 1 (4.16)

(d) In the Drude model the magnitude of the driving force FE = eEext equals the magnitude drag force
Fdrag = mv/τc, leading to an estimate of the conductivity

σ =
ne2τc
m

= ω2
p τc (4.17)

The estimates given show
σ ∼ 1018 s−1 (4.18)

for a metal like copper.



5 Magneto Statics and Magnetic Matter

5.1 Magneto-Statics: Lectures 14, 15, 16

At first order in 1/c we have the magneto static equations

∇×B =
jtot
c

jtot =
j

c
+

1

c
∂tE

(0)︸ ︷︷ ︸
displacement current

(5.1)

∇ ·B =0 (5.2)

where jD = 1/c ∂tE
(0) is the displacement current. The formulas given below assume that jD is zero. But,

with no exceptions apply if one replaces j → j + jD.
The current is taken to be steady

∇ · j = 0 (5.3)

Computing Fields: Lecture 14 and 15

(a) Below we note that for a current carrying wire

jd3r = Id` (5.4)

(b) We can compute the fields using the integral form of Ampères law ∇×B = j/c, which says that the
loop integral of B is equal to the current piercing the area bounded by the loop∮

B · d` =
Ipierce
c

(5.5)

For the familiar case of a current carrying wire we found Bφ = (I/c)/2πρ, where ρ is the distance from
the wire.

(c) The Biot-Savat Law is seemingly similar to the coulomb law

B(r) =

∫
d3ro

j(ro)/c× r̂ − ro
4π|r − ro|2

(5.6)

We used this to compute the magnetic field of a ring of radius on the z-axis

Bz = 2
(I/c)πa2

4π
√
z2 + a2

(5.7)

which you can remember by knowing magnetic moment of the ring and other facts about magnetic
dipoles (see below)

(d) Using the fact that ∇ ·B = 0 we can write it as the curl of A

B = ∇×A A→ A+ ∇Λ (5.8)

but recognize that we can always add a gradient of a scalar function Λ to A without changing B.
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20 CHAPTER 5. MAGNETO STATICS AND MAGNETIC MATTER

(e) If we adopt the coulomb gauge ∇ ·A = 0 and use the much used identity

∇× (∇×A) = −∇2A+ ∇(∇ ·A) , (5.9)

we get the result

−∇2A =
j

c
. (5.10)

Then in free space A satisfies

A(r) =

∫
d3ro

j(ro)/c

4π|r − ro|
(5.11)

(f) The equations must be supplemented by boundary conditions. In vacuum we have that the parallel
components of B jump according to size of the surface currents K, while the normal components of
B are continuous

n× (B2 −B1) =
K

c
(5.12)

n · (B2 −B1) = 0 (5.13)

Multipole expansion of magnetic fields: Lecture 16

We wish to compute the magnetic field far from a localized set of currents. We can start with Eq. (5.14)
and determine that far from the sources the vector potential is described by the magnetic dipole moment:

(a) The vector potential is

A =
m× r̂
4πr2

(5.14)

where

m = 1
2

∫
d3roro × j(ro)/c (5.15)

is the magnetic dipole moment.

(b) For a current carrying wire:

m =
I

c

1

2

∮
ro × d`o =

I

c
a (5.16)

(c) The magnetic field from a dipole

B(r) =
3(n ·m)−m

4πr3
(5.17)

(d) UNITS NOTE: I defined m in Eq. (5.15) with j/c. This has the “feature” that that

mHL =
mMKS

c
(5.18)

In MKS units

AMKS = µo
mMKS × r̂

4πr2
(5.19)

Setting εo = 1 so µo = 1/c2 and multiplying by c

AHL = cAMKS =
mMKS/c× r̂

4πr2
=
mHL × r̂

4πr2
(5.20)

Below we will define the magnetization, and similarly MHL = MMKS/c.
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Separation of variables with magnetic problems

There are two cases where the equations for A simplify.

(a) If the current is azimuthally symmetric then it is reasonable to try a form Aφ(r, θ)

−∇2A = µ
j

c
⇒ −∇2Aφ +

Aφ

r2 sin2 θ
= µ

jφ
c

(5.21)

This is similar to the method of solution presented in

(b) If the current runs up and down then you can try Az(ρ, φ) in cylindrical coordinates:

−∇2Az(ρ, φ) = µ
jz
c

(5.22)

Forces on currents: Lecture 16

(a) We wish to compute the force on a small current carrying object in an external magnetic field. For a
compact region of current (which is small compared to the inverse gradients of the external magnetic
field) the total magnetic force is

F (ro) = (m · ∇)B(ro) (5.23)

where m is measured with respect ro, i.e.

m =
1

2

∫
V

d3r δr × j(r)/c (5.24)

with δr = r − ro.

(b) For a fixed dipole magnitude we have F = ∇(m ·B) or

U(ro) = −m ·B(ro) (5.25)

This formula is the same as the MKS one since we have taken mHL = mMKS/c.

(c) The torque is
τ = m×B (5.26)

(d) Finally (we included this later) the magnetic force on a current carrying region is

(FB)
j

=
1

c

∫
V

(j ×B)
j

= −
∫
∂V

dS niT
ij
B (5.27)

where

T ijB = −BiBj +
1

2
B2δij (5.28)

is the magnetic stress tensor and n is an outward directed normal.


	Ohms Law and Conduction
	Steady current and Ohms Law: Lecture 17
	Basic physics of metals, Drude model of conductivity: Lecture 22 

	Magneto Statics and Magnetic Matter
	Magneto-Statics: Lectures 14, 15, 16


