

## Problem 1. Potential from a strip.

An infinite conducting strip of width $D$ (between $0<x<D$ ) is maintained at potential $V_{o}$, while on either side of the strip are grounded conducting planes. The strip and the planes are separated by a tiny gap as shown below.
(a) Following a similar example given in class, determine the potential everywhere in the upper half plane $y>0$.
(b) Determine the surface charge density on the strip and on the grounded planes, and make a graph.

## Problem 2. A Periodic Array of Charged Rings.

Consider a periodic array of charged rings of radius $R$ and separation $b$, so that the $z$ coordinates of the rings are $z=0, \pm b, \pm 2 b, \ldots$. Each ring has charge $Q$. We will find the potential below
(a) This problem is solved by exploiting the periodic nature of the problem, writing the charge density and the potential as a fourier series. Use completeness to show that that the charge density is

$$
\begin{equation*}
\rho(\boldsymbol{x})=\frac{Q}{2 \pi R} \delta(\rho-R) \frac{1}{b} \sum_{n=-\infty}^{\infty} e^{i k_{n} z} \tag{1}
\end{equation*}
$$

where $k_{n}=2 \pi n / b$.
(b) Solve for the potential inside and outside the rings, and use the jump condition to relate the two solutions. Show that the potential outside of the rings is

$$
\begin{equation*}
\varphi(\boldsymbol{x})=\frac{Q}{2 \pi b}\left[-\ln \rho+2 \sum_{n=1}^{\infty} \cos \left(k_{n} z\right) I_{0}\left(k_{n} R\right) K_{0}\left(k_{n} \rho\right)\right] \tag{2}
\end{equation*}
$$

(c) For $\rho$ large show that

$$
\begin{equation*}
\varphi(\boldsymbol{x}) \simeq \frac{Q}{2 \pi b}\left[-\ln \rho+\sqrt{\frac{b}{\rho}} \cos \left(\frac{2 \pi z}{b}\right) I_{o}(2 \pi R / b) e^{-2 \pi \rho / b}\right] \tag{3}
\end{equation*}
$$

and explicitly interpret the leading term, $-\ln \rho$, and its coefficient, $Q /(2 \pi b)$.


## Problem 3. A point charge and a semi-infinite dielectric slab

A point charge of charge $q$ in vacuum is at the origin $\boldsymbol{r}_{o}=(0,0,0)$. It is separated from a semi-infinite dielectric slab filling the space $z>a$ with dielectric constant $\epsilon>1$. When evaluating the potential for $z<a$, an image charge solution is found by placing an image charge at $z=2 a$. When evaluating the potential for $z>a$ we place an image charge at the origin. The full image solution is

$$
\varphi(\boldsymbol{r})= \begin{cases}\frac{q}{4 \pi|\boldsymbol{r}|}-\frac{\beta q}{4 \pi|r-2 a \hat{z}|} & z<a  \tag{4}\\ \frac{\beta^{\prime} q}{4 \pi \epsilon|\boldsymbol{r}|} & z>a\end{cases}
$$

where $\beta=(\epsilon-1) /(\epsilon+1)$ and $\beta^{\prime}=(2 \epsilon) /(1+\epsilon)$
(a) Sketch a picture of the resulting electric field lines.
(b) Quite generally show that the electric field lines refract at a discontinuous interface

$$
\begin{equation*}
\frac{\tan \theta_{I}}{\epsilon_{\mathrm{I}}}=\frac{\tan \theta_{\mathrm{II}}}{\epsilon_{\mathrm{II}}} \tag{5}
\end{equation*}
$$

where $\theta_{\mathrm{I}}$ and $\theta_{\text {II }}$ are the angles between the normal pointing from I to II and the electric fields in region I and region II, and $\epsilon_{\mathrm{I}}$ and $\epsilon_{\mathrm{II}}$ are the dielectric constants.

## Problem 4. A Dielectric slab intervenes.

This problem will calculate the force between a point charge $q$ in vacuum and a dielectric slab with dielectric constant $\epsilon>1$. The point charge is at the origin $\boldsymbol{r}_{o}=\left(x_{o}, y_{o}, z_{o}\right)=(0,0,0)$, but we will keep $x_{o}, y_{o}, z_{o}$ for clarity. The slab lies between $z=a$ and $z=a+\delta$ with $a>0$ and has infinite extent in the $x, y$ directions
(a) Write the free space Green function as a Fourier transform

$$
\begin{equation*}
\frac{q}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|}=q \int \frac{d^{2} \boldsymbol{k}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{k}_{\perp} \cdot\left(\boldsymbol{r}_{\perp}-\boldsymbol{r}_{o \perp}\right)} g_{\boldsymbol{k}_{\perp}}^{o}\left(z, z_{o}\right) \tag{6}
\end{equation*}
$$

and show that the free space green function in fourier space is

$$
\begin{equation*}
g_{\boldsymbol{k}_{\perp}}^{o}\left(z, z_{o}\right)=\frac{e^{-k_{\perp}\left|z-z_{o}\right|}}{2 k_{\perp}} \tag{7}
\end{equation*}
$$

(b) Now consider the dielectric slab and write the potential produced by the point charge at $z_{o}=0$ as a Fourier transform

$$
\begin{equation*}
\varphi\left(\boldsymbol{r}_{\perp}, z\right)=q \int \frac{d^{2} \boldsymbol{k}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{k}_{\perp} \boldsymbol{r}_{\perp}} g_{\boldsymbol{k}_{\perp}}(z), \tag{8}
\end{equation*}
$$

and determine for $g_{k_{\perp}}(z)$ by solving in each region, matching across the interfaces, and by analyzing the jump at $z_{0}$. Show that for $z<0$ and $0<z<a$

$$
g_{k_{\perp}}(z)= \begin{cases}\frac{e^{k z}}{2 k}-\frac{\beta e^{k(z-2 a)}\left(1-e^{-2 \delta k}\right)}{2 k\left(1-\beta^{2} e^{-2 \delta k}\right)} & z<0  \tag{9}\\ \frac{e^{-k z}}{2 k}-\frac{\beta e^{k(z-2 a)}\left(1-e^{-2 \delta k}\right)}{2 k\left(1-\beta^{2} e^{-2 \delta k}\right)} & 0<z<a\end{cases}
$$

where $\beta=(\epsilon-1) /(\epsilon+1)$ and we have written $k=k_{\perp}$ to lighten the notation.
(c) Checks:
(i) Show that for $\delta \rightarrow \infty$ the potential for $z<a$ is in agreement with the results of the previous problem.
(ii) Show that when $\epsilon \rightarrow \infty$ (when the dielectric becomes almost metallic) you get the right potential.
(d) Show that the electric potential for region $z<a$ can be written

$$
\begin{equation*}
\varphi=\varphi_{\mathrm{ind}}+\frac{q}{4 \pi r} \tag{10}
\end{equation*}
$$

where $\varphi_{\text {ind }}$ is the induced potential and is regular at $r=0$. Show that the force on the point charge is

$$
\begin{equation*}
F^{z}=\beta \frac{q^{2}}{4 \pi(2 a)^{2}} \int_{0}^{\infty} d u \frac{4 u e^{-2 u}\left(1-e^{-2(\delta / a) u}\right)}{1-\beta^{2} e^{-2(\delta / a) u}} \tag{11}
\end{equation*}
$$

(e) Use a program such as mathematica to make a graph of the force $F^{z} /\left(\beta q^{2} /\left(4 \pi(2 a)^{2}\right)\right)$ versus $\delta / a$ for $\beta=0.1,0.5,0.9$ and sketch the result.

