Problem 1. A cylinder in a magnetic field

A very long hollow cylinder of inner radius a and outer radius b of permeability μ is placed in an initially uniform magnetic field \boldsymbol{B}_{o} at right angles to the field.
(a) For a constant field B_{o} in the x direction show that $A^{z}=B_{o} y$ is the vector potential. This should give you an idea of a convenient set of coordinates to use.
Remark: See Wikipedia for a list of the vector Laplacian in all coordinates. Most often the vector Laplacian is used if the current is azimuthal and solutions may be looked for with $A_{\phi} \neq 0$ and $A_{r}=A_{\theta}=0$ (or $A_{\rho}=A_{z}=0$ in cylindrical coordinates). This could be used for example in Problem 3. Similarly if the current runs up and down, with $A_{z} \neq 0$ and $A_{\rho}=A_{\phi}=0$, so that $\boldsymbol{B}=\left(B_{x}(x, y, z), B_{y}(x, y, z), 0\right)$ is independent of z, then the vector Laplacian in cylindrical coordinates $-\nabla^{2} A_{z}$ is a good way to go.
(b) Show that the magnetic field in the cylinder is constant $\rho<a$ and determine its magnitude.
(c) Sketch $|\boldsymbol{B}| /\left|\boldsymbol{B}_{o}\right|$ at the center of the as function of μ for $a^{2} / b^{2}=0.9,0.5,0.1$ for $\mu>1$.

Problem 2. Helmholtz coils

Consider a compact circular coil of radius a carrying current I, which lies in the $x-y$ plane with its center at the origin.
(a) By elementary means compute the magnetic field along the z axis.
(b) Show by direct analysis of the Maxwell equations $\nabla \cdot \boldsymbol{B}=0$ and $\nabla \times \boldsymbol{B}=0$ that slightly off axis near $z=0$ the magnetic field takes the form

$$
\begin{equation*}
B_{z} \simeq \sigma_{0}+\sigma_{2}\left(z^{2}-\frac{1}{2} \rho^{2}\right), \quad B_{\rho} \simeq-\sigma_{2} z \rho \tag{1}
\end{equation*}
$$

where $\sigma_{0}=\left(B_{z}^{o}\right)$ and $\sigma_{2}=\frac{1}{2}\left(\frac{\partial^{2} B_{z}^{o}}{\partial z^{2}}\right)$ are the field and its z derivatives evaluated at the origin. For later use give σ_{0} and σ_{2} explictly in terms of the current and the radius of the loop.
Remark: Upon solving this problem, it should be clear that this method of solution does not rely on being close to $z=0$. We just chose $z=0$ for definiteness.
(c) Now consider a second identical coil (co-axial with the first), having the same magnitude and direction of the current, at a height b above the first coil, where a is the radii of the rings. With the coordinate origin relocated at the point midway between the two centers of the coils, determine the magnetic field on the z-axis near the origin as an expansion in powers of z to z^{4}. Use mathematica if you like. You should find that the coefficient of z^{2} vanishes when $b=a$
Remark For $b=a$ the coils are known as Helmholtz coils. For this choice of b the z^{2} terms in part (c) are absent. (Also if the off-axis fields are computed along the lines of part (b), they also vanish.) The field near the origin is then constant to 0.1% for $z<0.17 a$.

Problem 3. The field from a ring current.

Consider conducting ring of current radius a lying in the $x-y$ plane, carrying current I in the counter clockwise direction, $\boldsymbol{I}=I \hat{\boldsymbol{\phi}}$.
(a) Starting from the general (coulomb gauge) expression

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r})=\int d^{3} \boldsymbol{r}_{o} \frac{\mathbf{j}\left(\boldsymbol{r}_{o}\right) / c}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|} \tag{2}
\end{equation*}
$$

and the expansion of $1 /\left(4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|\right)$ in spherical coordinates, show that the expansion of A_{ϕ} in the x, y plane inside the ring is

$$
\begin{equation*}
\left.A_{\phi}(\rho)\right|_{z=0}=\frac{I}{2 c} \sum_{\ell=1}^{\infty} \frac{\left(P_{\ell}^{1}(0)\right)^{2}}{\ell(\ell+1)}\left(\frac{\rho}{a}\right)^{\ell} \tag{3}
\end{equation*}
$$

where $\rho=\sqrt{x^{2}+y^{2}}$ and P_{ℓ}^{1} is the associated Legendre polynomial. (Check out wikipedia entry on spherical harmonics)
(b) Compute $B_{z}(\rho)$ in the x, y plane.
(c) Show that close to the axis of the shell the magnetic field you computed in part (b) is in agreement with the results of Eq. (1) when evaluated at $z=0$, i.e. that for small ρ part (b) yields $B_{z}(\rho) \simeq \sigma_{0}-\frac{1}{2} \sigma_{2} \rho^{2}$ with the appropriate values of σ_{0} and σ_{2}.
Remark: Using the generating function of Legendre polynomials derived in class

$$
\begin{equation*}
\frac{1}{\sqrt{1+r^{2}-2 r \cos \theta}}=\sum_{\ell=0}^{\infty} r^{\ell} P_{\ell}(\cos \theta) \tag{4}
\end{equation*}
$$

and the defintion of $P_{\ell}^{1}(\cos \theta)=-\sin \theta \frac{d P_{\ell}(\cos \theta)}{d(\cos \theta)}$, we show that

$$
\begin{equation*}
\sum_{\ell=1}^{\infty} r^{\ell} P_{\ell}^{1}(0)=\frac{-r}{\left(1+r^{2}\right)^{3 / 2}} \simeq-r+\frac{3}{2} r^{3}-\frac{15}{8} r^{5}+\ldots \tag{5}
\end{equation*}
$$

establishing that

$$
\begin{equation*}
P_{1}^{1}(0)=-1 \quad P_{3}^{1}(0)=\frac{3}{2} \quad P_{5}^{1}(0)=-\frac{15}{8} \quad P_{\ell}^{1}(0)=0 \text { for } \ell \text { even. } \tag{6}
\end{equation*}
$$

(d) Consider a magnetic dipole of magnetic moment $\boldsymbol{m}=-m \hat{\boldsymbol{z}}$ in the $x-y$ plane oriented oppositely to the field from the ring, show that when the dipole is inside the ring the force on the dipole is

$$
\begin{equation*}
\mathbf{F}=-\hat{\boldsymbol{\rho}} \frac{m B_{o}}{a} \sum_{\ell=3}^{\infty} \frac{(\ell-1)}{\ell}\left(P_{\ell}^{1}(0)\right)^{2}\left(\frac{\rho}{a}\right)^{\ell-2} \tag{7}
\end{equation*}
$$

where the negative indicates that the force is towards the center, and $B_{o}=I /(2 c a)$ is the magnetic field in the center of the ring.
(e) Plot the force $|\mathbf{F}| /\left[m B_{o} / a\right]$ as a function of ρ / a.

Problem 4. Two electrodes in a conductor filling half of space

Two small spherical electrodes of radius a are embedded in a semi-infinite medium of conductivity σ, each at a distance $d>a$ from the plane face of the medium and at a distance b from each other. Find the resistance between the electrodes. Sketch the flow lines of current if the two electrodes are held at a potential difference $\Delta \varphi$.

Problem 5. Force on a displaced sphere

A hollow metal spherical shell of radius, a, raised to potential V_{o} (relative to zero at infinity) is placed inside a spherical cavity of radius b (with $b>a$), which is carved out of an infinite block of dielectric of dielectric constant ϵ. The metal sphere is displaced from the center of the cavity by a small distance $\boldsymbol{s}=s \hat{\mathbf{z}}$.
(a) Determine the potential to zeroth order in s (see the solutions to first order given below)
(b) Show that to first order in s the potential outside the shell can be written:

$$
\begin{align*}
\varphi^{\text {in }} & =\varphi_{o}+\frac{Q}{4 \pi}\left[\frac{1}{r}+\left(\frac{a^{3}}{b^{3} \beta-a^{3}}\right)\left(\frac{s}{r^{2}}-\frac{s r}{a^{3}}\right) \cos \theta\right] \quad r<r_{*}(\theta) \tag{8}\\
\varphi^{\text {out }} & =\frac{Q}{4 \pi \epsilon}\left[\frac{1}{r}+\frac{s}{r^{2}}\left(\frac{a^{3}+\frac{1}{2} b^{3}}{b^{3} \beta-a^{3}}\right) \cos \theta\right] \quad r>r_{*}(\theta) \tag{9}
\end{align*}
$$

Here we have defined two reappearing constants

$$
\begin{align*}
\beta & \equiv(1+2 \epsilon) /(\epsilon-1) \tag{10}\\
\varphi_{o} & \equiv-\frac{Q}{4 \pi b} \frac{\epsilon-1}{\epsilon} \tag{11}
\end{align*}
$$

Finally Q is the induced charge on the surface of the (inner) sphere which is related to the potential V_{o} by $Q=4 \pi V_{o} a b \epsilon /(b \epsilon-a(\epsilon-1))$.
(Hint: take the center of coordinates to be the center of the metal spherical shell. Show that the dielectric boundary is at

$$
\begin{equation*}
r_{*}(\theta) \simeq b-s \cos \theta+O\left(s^{2}\right) \tag{12}
\end{equation*}
$$

Then show that two unit vectors parallel and perpendicular to the surface are (respectively)

$$
\begin{align*}
\boldsymbol{u} & \simeq \hat{\boldsymbol{\theta}}+\frac{s}{b} \sin \theta \hat{\boldsymbol{r}}+O\left(s^{2}\right) \tag{13}\\
\boldsymbol{n} & \simeq-\frac{s}{b} \sin \theta \hat{\boldsymbol{\theta}}+\hat{\boldsymbol{r}}+O\left(s^{2}\right) \tag{14}
\end{align*}
$$

Use these vectors to write down the boundary conditions through first order in s at $r=r_{*}(\theta)$. Then solve for the fields in a power series in s, adjusting the coefficients to satisfy the boundary conditions order by order.
(c) Show that the force on the the shell to first order in s is

$$
\begin{equation*}
F^{z}=\frac{Q^{2}}{4 \pi} \frac{s}{b^{3} \beta-a^{3}} \tag{15}
\end{equation*}
$$

