Problem 1. A conducting slab

A plane polarized electromagnetic wave $\boldsymbol{E}=\boldsymbol{E}_{I} e^{i k z-\omega t}$ is incident normally on a flat uniform sheet of an excellent conductor $(\sigma \gg \omega)$ having thickness D. Assume that in space and in the conducting sheet $\mu=\epsilon=1$, discuss the reflection an transmission of the incident wave.
(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order in $(\omega / \sigma)^{1 / 2}$, are:

$$
\begin{align*}
& \frac{E_{R}}{E_{I}}=\frac{-\left(1-e^{-2 \lambda}\right)}{\left(1-e^{-2 \lambda}\right)+\gamma\left(1+e^{-2 \lambda}\right)} \tag{1}\\
& \frac{E_{T}}{E_{I}}=\frac{2 \gamma e^{-\lambda}}{\left(1-e^{-2 \lambda}\right)+\gamma\left(1+e^{-2 \lambda}\right)} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \gamma=\sqrt{\frac{2 \omega}{\sigma}}(1-i)=\frac{\omega \delta}{c}(1-i) \tag{3}\\
& \lambda=(1-i) D / \delta \tag{4}
\end{align*}
$$

and $\delta=\sqrt{2 / \omega \mu \sigma}$ is the skin depth.
(b) Verify that for zero thickness and infinite skin depth you obtain the proper limiting results.
(c) Optional: Show that, except for sheets of very small thickness, the transmission coefficient is

$$
\begin{equation*}
T=\frac{8(\operatorname{Re} \gamma)^{2} e^{-2 D / \delta}}{1-2 e^{-2 D / \delta} \cos (2 D / \delta)+e^{-4 D / \delta}} \tag{5}
\end{equation*}
$$

Sketch $\log T$ as a function of D / δ, assuming $\operatorname{Re} \gamma=10^{-2}$. Define "very small thickness".

Problem 2. Exponentially Decaying Waves

Consider an exponentially decaying wave in vacuum moving in the $x-z$ plane

$$
\begin{equation*}
\boldsymbol{E}(t, x, z)=\boldsymbol{E}_{o} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}=\boldsymbol{E}_{o} e^{i k_{x} x-\kappa_{z} z-i \omega t} \tag{6}
\end{equation*}
$$

where $\boldsymbol{k}=\left(k_{x}, k_{z}\right)=\left(k_{x}, i \kappa_{z}\right)$, and $\boldsymbol{E}_{o}=\left(E_{x}, E_{z}\right)$ is polarized in the (x, z) plane, but is not necessarily real.
(a) Use Maxwell equations to determine the relation between k_{x}, κ_{z} and ω
(b) Show that the time averaged Poynting flux in the z direction $\boldsymbol{S} \cdot \hat{\boldsymbol{z}}$ is zero. (Hint: what are the constraints on \boldsymbol{E}_{o} and \boldsymbol{B}_{o} imposed by the Maxwell equations)

Problem 3. Analysis of the Good-Hänchen effect

A ribbon beam of in plane polarized radiation of wavelength λ is totally internally reflected at a plane boundary between a non-permeable (i.e. $\mu=1$) dielectric media with index of refraction n and vacuum (see below). The critical angle for total internal reflection is θ_{I}^{o}, where $\sin \theta_{I}^{o}=1 / n$. First assume that the incident wave takes the form $\boldsymbol{E}(t, \boldsymbol{r})=\boldsymbol{E}_{I} e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}$ of a pure plane wave polarized in plane and study the transmitted and reflected waves.

(a) Starting from the Maxwell equations, show that for $z>0$ (i.e. in vacuum) the electric field takes the form:

$$
\begin{equation*}
\boldsymbol{E}_{2}(x, z)=\boldsymbol{E}_{2} e^{-\frac{\omega}{c}\left(\sqrt{n^{2} \sin \theta_{I}^{2}-1}\right) z} e^{i \frac{\omega n \sin \theta_{I}}{c} x} \tag{7}
\end{equation*}
$$

(b) Starting from the Maxwell equations, show that for $\theta_{I}>\theta_{I}^{0}$ the ratio of the reflected amplitude to the incident amplitude is a pure phase

$$
\begin{equation*}
\frac{E_{R}}{E_{I}}=e^{i \phi\left(\theta_{I}, \theta_{I}^{o}\right)} \tag{8}
\end{equation*}
$$

and determine the phase angle. Thus the reflection coefficient $R=\left|E_{R} / E_{I}\right|^{2}=1$ However, phase has consequences.
(c) Show that for a monochromatic (i.e. constant $\omega=c k$) ribbon beam of radiation in the z direction with a transverse electric field amplitude, $E(x) e^{i k_{z} z-i \omega t}$, where $E(x)$ is smooth and finite in the transverse extent (but many wavelengths broad), the lowest order approximation in terms of plane waves is

$$
\begin{equation*}
\boldsymbol{E}(x, z, t)=\boldsymbol{\epsilon} \int \frac{d \kappa}{(2 \pi)} A(\kappa) e^{i \kappa x+i k z-i \omega t} \tag{9}
\end{equation*}
$$

where $k=\omega / c$. Thus, the finite beam consists of a sum plane waves with a small range of angles of incidence, centered around the geometrical optics value.
(d) Consider a reflected ribbon beam and show that for $\theta_{I}>\theta_{I}^{o}$ the electric field can be expressed approximately as

$$
\begin{equation*}
\boldsymbol{E}_{R}=\boldsymbol{\epsilon}_{R} E\left(x^{\prime \prime}-\delta x\right) e^{i \boldsymbol{k}_{R} \cdot \boldsymbol{r}-i \omega t+i \phi\left(\theta_{I}, \theta_{I}^{o}\right)} \tag{10}
\end{equation*}
$$

where $\boldsymbol{\epsilon}_{R}$ is a polarization vector, $x^{\prime \prime}$ is the coordinate perpendicular to the reflected wave vector \boldsymbol{k}_{R}, and the displacement $\delta x=-\frac{1}{k} \frac{d \phi}{d \theta_{I}}$ is determined by phase shift.
(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane polarized beam is

$$
\begin{equation*}
D_{\|}=\frac{\lambda}{\pi} \frac{\sin \theta_{I}}{\sqrt{\sin ^{2} \theta_{I}-\sin ^{2} \theta_{I}^{o}}} \frac{\sin ^{2} \theta_{I}^{o}}{\sin \theta_{I}^{2}-\cos \theta_{I}^{2} \sin ^{2} \theta_{I}^{o}} \tag{11}
\end{equation*}
$$

Problem 4. Reflection of a Gaussian Wave Packet Off a Metal Surface:

In class we showed that the amplitude reflection coefficient from a good conductor ($\omega \ll \sigma$) for a plane wave of wavenumber $k=\omega / c$ is

$$
\begin{equation*}
\frac{H_{R}(k)}{H_{I}(k)}=1-\sqrt{\frac{2 \mu \omega}{\sigma}}(1-i) \simeq\left(1-\sqrt{\frac{2 \mu \omega}{\sigma}}\right) e^{i \phi(\omega)} \tag{12}
\end{equation*}
$$

where the phase is for $\omega \ll \sigma$:

$$
\begin{equation*}
\phi(\omega) \simeq \sqrt{\frac{2 \mu \omega}{\sigma}} \tag{13}
\end{equation*}
$$

Consider a Gaussian wave packet with average wave number k_{o} centered at $z=-L$ at time $t=-L / c$ which travels towards a metal plane located at $z=0$ and reflects. Show that the time at which the center of the packet returns to $z=-L$ is given by

$$
\begin{equation*}
t=\frac{L}{c}+\frac{\mu \delta_{o}}{2 c} \tag{14}
\end{equation*}
$$

where the time delay is due to the phase shift $d \phi\left(\omega_{o}\right) / d \omega$, and $\delta_{o}=\sqrt{2 c / \sigma \mu k_{o}}$ is the skin depth.

