
Problem 1. Green theorem for first and second order equations
and the initial value problem

First order: Consider a model first order equation equation for the velocity

m
dv

dt
+mηv = 0 (1)

describing how a particle slows down.

(a) Determine the Green function for this equation, i.e. find the causal function that
satisfies [

m
d

dt
+mη

]
GR(t) = δ(t) (2)

using the direct method, and by fourier transforms.

(b) Show that the solution at time t satisfying the boundary conditions specified at t = to
are

v(t) = mGR(t, to)v(to) (3)

This is normally how the Green function (propagator) is used in quantum mechanics. The
Green function is used slightly differently for second order equations, since x and ẋ enter the
game.

Second order: In class we showed that the electric potential can be determined from
knowledge of the boundary value and the Green function. A very similar statement can be
made about an initial value problem, i.e. the solution at future times can be determined
from the initial conditions and the Green function.

For definiteness we will take a harmonic oscillator with mass m and resonant frequency
ωo:

m
d2x

dt2
+mω2

ox = 0

The retarded Green function G(t|to) is the position x(t) of the harmonic oscillator at time t
from an impulsive force at time to. It is causal, meaning that it vanishes whenever t < to,
i.e. (

m
d2

dt2
+mω2

o

)
GR(t|to) = δ(t− to) and GR(t, to) = 0 for t < to (4)

(a) Given the initial conditions for the oscillator, x(to) and ∂tox(to), at time to show that
the future value of the oscillator x(t) is given by the Wronskian of the Green function
and the initial conditions

x(t) = m [GR(t, to)∂toxo − x(to)∂toGR(t, to)] t > to (5)

Hint use the EOM to prove Greens theorem, i.e. that the wronskian of the Green
function and the solution we are looking for satisfies

∂to [x(to) (m∂toGR(t, to))− (m∂tox(to))GR(t, to)] = x(to)δ(t− to) . (6)
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Then use this result together with the fact that GR satisfies retarded boundary condi-
tions to prove Eq. (5) . We also tacitly assume that GR(t, to) satisfies(

m
d2

dt2o
+mω2

o

)
GR(t|to) = δ(t− to) and GR(t, to) = 0 for t < to (7)

which is true because the harmonic oscillator is self adjoint.

You could also proceed directly, showing that Eq. (5) satisfies the equations of motion(
m
d2

dt2
+mω2

o

)
x(t) = 0 (8)

and the initial conditions,

lim
t→to

x(t) =x(to) (9)

lim
t→to

dx(t)

dt
=∂tox(to) (10)

(b) Use the Green function for the undamped oscillator given in class to verify that you
get the correct result for x(t) in terms of the initial conditions.

(c) Show that for the wave equation, −�GR(tx|toxo) = δ(t−to)δ3(x−xo), the appropriate
generalization is

u(t,x) =
1

c2

∫
d3xo [G(tx|toxo)∂tou(to,xo)− u(to,xo)∂toG(tx|toxo)] (11)

Remark: The results of this problem show that the general solution to the driven
damped harmonic oscillator starting from some initial time moment to is

d2x

dt2
+mη

dx

dt
+mω2

ox(t) = F (t) (12)

is

x(t) = m [GR(t, to)∂toxo − x(to)∂toGR(t, to)] +

∫ t

to

dt′GR(t, t′)F (t′) . (13)

At late times (in the presence of any infinitessimal damping) the initial conditions can
be ignored.

Similarly for the first order equation:[
m
d

dt
+mη

]
v(t) = F (t) ; (14)

the general solution is

v(t) = mGR(t, to)v(to) +

∫ t

to

dt′GR(t, t′)F (t′) . (15)
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Problem 2. Green function of the Diffusion equation

Consider the homogeneous diffusion equation:

∂tn−D∇2n(t, r) = 0 . (16)

The retarded Green function of the equation satisfies[
∂t −D∇2

]
G(tr|toro) = δ(t− to)δ3(r − ro) . (17)

with retarded boundary conditions.

(a) Write Eq. (17) in time and k by introducing the spatial Fourier transform

G(t,k) ≡
∫
d3r e−ik·rG(t, r) , (18)

and then determine the retarded Green function of the diffusion equation in k and
time.

(b) Determine the retarded Green function in ω and k, GR(ω,k), by Fourier transforming
Eq. (17) in time and space. Verify that if you perform the Fourier integral over ω that
you get the result of part (a).

(c) By taking the spatial Fourier transform verify that

GR(τ, r) = θ(τ)
1

3
√

2πσ2(τ)
exp

(
−(r − ro)

2

2σ2(τ)

)
(19)

where σ2(t) = 2Dτ where τ = t− to
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