Problem 1. (Optional. In class. Good exam material) Radiation during perpendicular acceleration

Consider an ultrarelativistic particle of velocity β experiencing an acceleration a_{\perp} perpendicular to the direction of motion. Here a_{\perp} points along the x-axis and $\boldsymbol{\beta}$ points along the z-axis.
(a) Show that the energy radiated per retarded time is approximately

$$
\begin{align*}
\frac{d W}{d T d \Omega} & =\frac{e^{2}}{16 \pi^{2} c^{3}} \frac{a_{\perp}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right] \tag{1}\\
& \simeq \frac{e^{2}}{2 \pi^{2} c^{3}} \frac{a_{\perp}^{2}}{\left(1+(\gamma \theta)^{2}\right)^{3}}\left[1-\frac{4(\gamma \theta)^{2} \cos ^{2} \phi}{\left(1+(\gamma \theta)^{2}\right)}\right] \tag{2}
\end{align*}
$$

In the first equality, I give the full answer without approximation, but I will only grade the second approximate result.
Hint, in working out this radiation pattern you might (as a start) show without approximation that

$$
\begin{equation*}
|\boldsymbol{n} \times(\boldsymbol{n}-\boldsymbol{\beta}) \times \boldsymbol{a}|^{2}=(1-\boldsymbol{n} \cdot \boldsymbol{\beta})^{2} a^{2}-(\boldsymbol{n} \cdot \boldsymbol{a})^{2}\left(1-\beta^{2}\right) \tag{3}
\end{equation*}
$$

by using the " $b(a c)-(a b) c$ " rule. Then select a coordinate system were

$$
\begin{align*}
\boldsymbol{\beta} & =(0,0, \beta) \tag{4}\\
\boldsymbol{a} & =\left(a_{\perp}, 0,0\right) \tag{5}\\
\boldsymbol{n} & =(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{6}
\end{align*}
$$

(b) Work in a ultra-relativistic approximation, and compute the total power by integrating over the solid angle (as done in class) to show that you obtain the appropriate relativistic Larmour result ${ }^{1}$

$$
\begin{equation*}
\frac{d W}{d T}=\text { come on } \ldots \text { you know it } \ldots \text { right } ? \tag{7}
\end{equation*}
$$

1

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3 c^{3}} \gamma^{4} a_{\perp}^{2}
$$

