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First, as can be seen from Fig. 4, the radiation emitted
by the quark is localized in polar angle about the equa-
tor, ✓ = ⇡/2. From the far-zone expression for the energy
density, Eqs. (2.18) and (3.72), it is easy to see that the
characteristic opening angle about ✓ = ⇡/2 scales like
�✓ ⇠ 1/� in the v ! 1 limit. Furthermore, from Fig. 4 it
can be seen that the radial thickness � of each pulse of ra-
diation decreases as v increases. Again, from Eqs. (2.18)
and (3.72) it is easy to see that � ⇠ 1/�3 in the v ! 1
limit.8 Intriguingly, the scaling of both �✓ and � with �
are identical to those at weak coupling.

Emboldened by the agreement between the �-scaling
of � and �✓ at weak and strong coupling, we have com-
pared the shape of the spiral of energy density in the
z = 0 plane, for example as depicted at two velocities in
Fig. 4, with the shape of the classic synchrotron radiation
spiral (2.12). We find precise agreement, as illustrated in
Fig. 7. At strong coupling, the energy density E of (3.71)
is proportional to 1/⌅6 and so has maxima where ⌅ has
minima. We have already seen that in the r ! 1 limit,
⌅ ! ⇠ of (2.21) whose minima lie on the spiral (2.13),
which is the large-r approximation to (2.12). It can also
be shown that the minima of ⌅ lie on the spiral (2.12) at
all r.

Recall that our derivation of (2.12) in Section II was
purely geometrical, relying only on the fact that the ra-
diation is emitted tangentially, in the direction of the
velocity vector of the quark and the fact that the pulse
of radiated energy density propagates at the speed of
light without spreading. We have seen in Fig. 5 that at
strong coupling and in the limit of a large number of
colors, the radiation emitted by a rotating quark does
indeed propagate outwards at the speed of light, with-
out spreading. This justifies the application of the geo-
metrical arguments of Section II to the strongly coupled
radiation. The agreement with (2.11) and (2.12) then
implies that the strongly coupled radiation is also emit-
ted in the direction of the velocity vector of the quark:
if it were emitted in any other direction, � would have
the same �-scaling as ↵ and �✓; if the radiation were,
for example, emitted perpendicular to the direction of
motion of the quark, the spiral of energy density would
have the shape (2.14) instead of (2.12) — see Fig. 7. We
therefore reach the following conclusions: at both weak
and strong coupling, the energy radiated by the rotating
quark is beamed in a cone in the direction of the velocity

8 There may be a holographic interpretation of � ⇠ 1/�3. We
saw in Section IIIA that there is one special point on the string,
namely the worldsheet horizon at u = uc. Using the correspon-
dence between u and length-scale in the boundary quantum field
theory, we expect uc to translate into a length scale in the rest
frame of the rotating quark, corresponding to a length scale

� ⇠
uc

�
=

1

�3v!
0

=
R

0

�3v2
, (4.1)

in the inertial frame in which the center of motion is at rest. It
is tempting to identify � with � at v ! 1.

FIG. 7: r

2E/P for v = 1/2 in the z = 0 plane. The color code
is the same as in Fig. 4, with zero energy density blue and
maximal energy density red. The spiral curve marked with
the black dots is (2.12), namely the place where the spiral
of synchrotron radiation would be in electrodynamics or in
weakly coupled N = 4 SYM theory. We see that the spiral
of radiation in the strongly coupled gauged theory with a
gravitational dual is at the same location. This indicates that,
as at weak coupling, strongly coupled synchrotron radiation
is beamed in the direction of the motion of the quark. For
reference, the solid black line is (2.14), namely the place where
the synchrotron radiation would be if the quark were emitting
a beam of radiation perpendicular to its direction of motion.

of the quark with a characteristic opening angle ↵ ⇠ 1/�;
at both weak and strong coupling, the synchrotron radia-
tion propagates outward in a spiral with the shape (2.12),
with pulses whose width � ⇠ 1/�3 does not broaden.9

We now turn to the time-averaged angular distribu-
tion of power radiated through the sphere at infinity.
By time-averaging, we eliminate all dependence on az-
imuthal angle but nontrivial dependence on the polar an-
gle ✓ remains. Fig. 8 shows the normalized time-averaged
angular distribution of power in classical electrodynam-
ics (2.23a) and strongly coupled SYM (3.73) for velocity
v = 0.9. As is evident from the figure, in both classical
electrodynamics and N = 4 SYM the power is localized

9 Note that if the radiation is isotropic in the instantaneous rest
frame of the quark, then in the inertial “lab” frame it will be
beamed in a cone with opening angle ⇠ 1/� pointed along the
velocity of the quark. This, together with the result that the
pulses of radiation propagate without broadening, would yield a
spiral with the shape (2.12).

Figure crédit: Christina Athanasion et al, arXiv:1001.3880 
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FIG. 2: A sketch of the solutions (2.8). As the quark moves
along its circular trajectory, it emits radiation in a narrow
cone of angular width ↵ ⇠ 1/� in the direction of its velocity
vector. The diagram is a snapshot at the time when the quark
is at the top of the circle. The red spiral shows where the
radiation emitted at earlier times is located at the time of the
snapshot. The width � of the spiral scales like � ⇠ 1/�3, as
explained in Fig. 3.

where

⌅(t0, r) ⌘ |r�r

quark

(t0)| � r · ṙ
quark

(t0)

r
, (2.9)

� = 1/
p

1 � v2, r = |r|, and the retarded time t
ret

is the
solution to

t � t
ret

� |r � r

quark

(t
ret

)| = 0 . (2.10)

(t�t
ret

) is the light travel time between r

quark

(t
ret

) and r.
Because the motion of the quark is periodic, r

quark

(t
ret

)
is a periodic function of its argument with period 2⇡/!

0

.
Eq. (2.10) then implies that if t is shifted by 2⇡/!

0

, t
ret

shifts by the same amount so that (t � t
ret

) is left un-
changed. Because the motion of the quark is circular,
Eq. (2.10) also implies that a change in the position of
the quark corresponding to a shift in its azimuthal angle
by �' is equivalent to a shift in both t and t

ret

by �'/!
0

.
We now describe the qualitative behavior of the solu-

tions (2.8). Fig. 2 shows a pictorial representation of the
solutions (2.8). As the quark moves along its circular tra-
jectory, it emits radiation in the direction of its velocity
in a narrow cone of angular width ↵. From the solutions
(2.8) it can be shown that in the large � limit ↵ scales
like ↵ ⇠ 1/� for both the scalar and vector radiation.
The cone of radiation emitted at each time propagates
outwards at the speed of light. At any one moment in
time, the radiation emitted at all times in the past forms
a spiral, as illustrated by the red spiral sketched in Fig. 2.
Clearly, the radial width � of the spiral must go to zero
as ↵ ! 0, namely as � ! 1. As we illustrate in Fig. 3,
in the large � limit the radial width scales like � ⇠ 1/�3.
To understand the scaling of �, consider an observer at
the point p in Fig. 3. As the quark moves along its tra-
jectory, an observer at p will see a short pulse of radiation

↵

↵

�

R
0

↵/v

t
1

t
2

p

Monday, December 7, 2009

FIG. 3: A close-up illustration of the emission of radiation at
two times t

1

and t

2

. The radiation is emitted in the direction
of the quark’s velocity vector, within a cone of angular width
↵. An observer at the point p is illuminated by a pulse of
radiation of duration �t ⇠ R

0

↵ and of spatial thickness �.
The leading edge of the pulse observed at p is emitted at t

1

and the trailing edge observed at p is emitted at t
2

. At time t
2

the radiation emitted at t
1

, denoted by the solid red line, has
traveled a distance R

0

↵/v towards p. The chordal distance
between the two emission points is R

0

↵ in the ↵ ! 0 limit.
The width � is therefore � = R

0

↵(1/v � 1).

of duration �t ⇠ R
0

↵/v. The leading edge of the pulse
will be emitted by the quark at time t

1

and the trail-
ing edge will be emitted at time t

2

= t
1

+ R
0

↵/v. At
time t

2

the radiation emitted at t
1

will have traveled a
distance R

0

↵/v towards p. Moreover, the chordal dis-
tance between the two emission points is approximately
R

0

↵ when ↵ is small. It therefore follows that the spatial
thickness � of the pulse observed at p scales like

� ⇠ (R
0

↵/v � R
0

↵) ⇠ R
0

↵/�2 ⇠ R
0

/�3 . (2.11)

We note that the fact that � and ↵ scale with di↵erent
powers of � is a consequence of the fact that the radi-
ation is emitted in the direction of the quark’s velocity.
If the radiation were emitted in any other direction, �
and ↵ would have the same � scaling. Because we will
re-use these arguments in the analysis of our strong cou-
pling results, it is important to note that they are purely
geometrical, relying only on the fact that the radiation
travels at the speed of light and the fact that the outward
going pulse of radiation propagates without broadening,
maintaining the spiral shape whose origin we have illus-
trated.

In addition to determining how the pulse widths ↵
and � are related, these geometrical considerations in
fact specify the location of the spiral of radiation pre-
cisely. For a quark moving in a circle of radius R

0

in the
(x, y) plane, at the time at which the quark is located at
(x, y) = (R

0

, 0) the spiral of energy density radiated at
all times in the past is centered on a curve in the z = 0

T1

T2

⇥c

= c (t2 �
t1)

R
o ↵

Figure Credit: Christina Athanasion et al, arXiv: 1001.3880 








