Last Time

- Discussed Radiation

$$
\left.\begin{array}{l}
-\square \varphi=\rho \\
-\square A=J / c
\end{array}\right\} \quad \begin{aligned}
& \text { Use the Grin function of wave-egn } \\
& \text { to solve }
\end{aligned}
$$

From Here we derived the Lienard-Wiechert
Potentials. In the far field these are

$$
\begin{array}{ll}
\varphi=\frac{e}{4 \pi r(1-\vec{n} \cdot \vec{\beta})} \\
\vec{A}=\frac{e}{4 \pi r} \frac{\vec{V}(T) / c}{(1-n \cdot \beta(T))}
\end{array}
$$

Then solved for fields:

$$
\vec{E}_{\text {rad }}=n \times n \times \frac{1}{c} \frac{\partial \vec{A}}{\partial t}=\frac{e}{4 \pi r c^{2}} \frac{n \times(\vec{n}-\vec{\beta}) \times \vec{a}}{(1-n-\beta)^{3}}
$$

Last Time pg, 2
Studied the case for a 11β

$$
\frac{d W}{d T d \Omega}=\frac{d W}{d t d \Omega} \frac{d t}{d T}=c\left|r E_{r a d}\right|^{2}(1-n \cdot \beta)
$$

Found

$$
\frac{d W}{d T d \Omega}=\frac{e^{2}}{16 \pi^{2} c^{3}} \frac{\ln x(n-\beta) \times\left. a\right|^{2}}{(1-n \cdot \beta)^{5}}
$$

Then we noted that the collinear factor
$\frac{\partial T}{\partial t}=\frac{1}{(1-n \cdot \beta)}=\frac{\text { scale factor between formation }}{\text { time ticks } \Delta T}$ and observation time ticks ΔT and observation time Δt ticks
Is Strongly enhanced for large γ, and small \sim^{∞}, but $\gamma \theta \approx 1$

$$
\frac{1}{(1-r \cdot \beta)} \approx \frac{2 \gamma^{2}}{\left(1+(\gamma \theta)^{2}\right)} \quad \text { (prove me!) }
$$

This means that radiation is concentrated in a cone of $\theta \sim \frac{1}{\gamma}$ (Though directly forward there is no radiation)

Last Time pg. 3
Then for a /1 to β found

$$
n \times n \times a=a \sin \theta \simeq a \theta
$$

So

$$
\begin{aligned}
& \frac{d W}{d T d \Omega} \sim \frac{e^{2} \frac{a^{2}}{c^{3}} \gamma^{8} \frac{(\gamma \theta)^{2}}{\left(1+(\gamma \theta)^{2}\right)^{5}} \quad d \Omega \simeq 2 \pi \theta d \theta}{} \\
& \frac{d W}{d T} \sim \frac{e^{2} a^{2} \gamma^{6}}{c^{3}} \frac{(\gamma \theta)^{2}}{\left(1+(\gamma \theta)^{2}\right)}(\gamma \theta) d(\gamma \theta)
\end{aligned}
$$

So

$$
\frac{d W}{d T} \sim \frac{e^{2} a^{2} \gamma^{6}}{c^{3}}
$$

More Precisely Showed

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3} \frac{\gamma^{6}}{c^{3}}\left[a_{11}^{2}+\frac{a_{1}^{2}}{\gamma^{2}}\right]
$$

Lenard Wiechert 1898

Analysis of Lienard-Wiechert Result
$\begin{aligned} & A^{\mu}=\frac{d^{2} x^{2}}{\overline{d \tau^{2}}}= \text { propper acceleration analyzed in } \\ & \text { homework }\end{aligned}$

In LRF of particle (LRF = local rest frame

$$
A^{\mu}=\left(\begin{array}{c}
0 \\
\alpha_{11} \\
\alpha_{\perp}
\end{array}\right) \quad A^{\mu} A_{\mu}=\alpha_{11}^{2}+a_{1}^{2}
$$

Thew hmwrk was to show

$$
\gamma^{3} a_{11}=\alpha_{11} \quad \text { and } \quad \gamma^{2} a_{1}=\alpha_{1}
$$

Then

$$
A^{\mu} A_{\mu}=\gamma^{6}\left[a_{1}^{2}+\frac{a_{1}^{2}}{\gamma^{2}}\right] \curvearrowleft \text { see pry at end }
$$

So

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3} A^{\mu} A_{\mu}
$$

Total Power (Pure Thinking)
In retrospect could "guess" this result
Look at the emission in rest frame of particle $=A^{h} A_{\mu}$ in rest frame

$$
\begin{aligned}
& \text { energy } \rightarrow \Delta E=\frac{e^{2}}{4 \pi} \frac{2}{3 c^{2}} a^{2} \Delta t \\
& \text { emitted }
\end{aligned}
$$

momention $\rightarrow \Delta \vec{P}=0 \leftarrow$ Since radiation
 emitted is emitted symmetricall and transverse to beam

$$
\begin{aligned}
\Delta t & =\Delta t \\
\Delta x & =0
\end{aligned}
$$

Then under boost

$$
\begin{aligned}
& \Delta E=\gamma \Delta E \\
& \Delta t=\gamma \Delta t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\text { total }}{\text { power }} & =\frac{\Delta E}{\Delta t}=\frac{\Delta E}{\Delta t}=\text { invariant } \\
& =\frac{e^{2}}{4 \pi} \frac{2}{3 c^{3}} \underbrace{A^{M} A_{\mu}}_{\rightarrow \text { true in all }}
\end{aligned}
$$

Linear vs. Circular Accelerators
In general, since $P^{\mu}=m U^{\mu}$, and $A^{\mu}=d U^{\mu} / d t$

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3} A^{\mu} A_{\mu}=\frac{e^{2}}{4 \pi} \frac{2}{3} \frac{1}{m^{2} c^{3}} \frac{d \rho^{\mu}}{d t} \frac{d \rho \mu}{d t}
$$

- Then for a linear accelerator where $d \vec{\rho} / d t$ is parallel to v

$$
\frac{d \vec{p}}{d \tau}=\frac{\gamma d \vec{p}}{d t} \quad \frac{d p^{0}}{d \tau}=\frac{d \sqrt{p^{2}+m^{2}} / c}{d \tau}=\frac{v}{c} \frac{d p}{d \tau}=\frac{\gamma v}{\bar{c}} \frac{d \vec{p}}{d t}
$$

So

$$
\frac{d p^{\mu}}{d \tau} \frac{d p_{n}}{d \tau}=-\left(\frac{d p^{0}}{d \tau}\right)^{2}+\left(\frac{d p}{d \tau}\right)^{2}=\left(\frac{d \vec{p}}{d t}\right)^{2}
$$

So that the radiated energy grows with the applied force squared

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3 m^{2} c^{2}}\left(\frac{d \vec{p}}{d t}\right)^{2}
$$

and is independent of γ

- By contrast for a circular accelerator where

$\frac{d \vec{p}}{d t}$ is perpendicular to
\vec{v}. We have that:

$$
\frac{d p^{\mu}}{d \tau} \frac{d p}{d t}=\frac{d \vec{p}_{\perp}}{d \tau} \cdot \frac{d \vec{p}_{\perp}}{d \tau}=\gamma^{2}\left(\frac{d \vec{p}_{\perp}}{d t}\right)^{2}
$$

'We have. that

$$
\frac{d W}{d T}=\frac{e^{2}}{4 \pi} \frac{2}{3} m^{2} c^{3} \quad \gamma^{2}\left(\frac{d \vec{p}_{1}}{d t}\right)^{2}
$$

So the radiated power grows as $\gamma^{2}!!1$ This is becoming prohibitive at colliders today, and is a big reason for research into Linear cuccelerators

Radiation During Circular motion (Synchrotron Radiation)

- Every period the strobelight of the radiation cone points in your direction.
- The pulses of light are short in duration its $\sim \Delta / c$ the cone is narrow $\alpha \sim \frac{1}{\gamma}$ (and because of the difference between the ${ }^{\gamma}$ formation and observation times. but that we will discuss below)
- The observer sees a pulse every period:

time

Figure Credit: Christina Athansion et al, arXiv 1001.3880

Figure crédit: Christina Athanasion et al, arXiv:1001.3880

Basic Uses of Synchrotron Radiation

- Since the pulse is very narrow in time it contains a wide range of fourier frequencies

$$
\Delta \omega \sim \frac{1}{\Delta t}
$$

We should compute the pulse shape, look at its fourier transform, and compute the power in each band.?

- The light is quite intense
- Both of features are highly desirable

Estimate of The Frequency Width
The frequency width is inversely related to the time width, Δt

$$
\Delta \omega \sim \frac{1}{\Delta t}
$$

Before Starting Definitions:
$\alpha \equiv$ angular width of cone, $\alpha \sim 1 / \gamma$
$\Delta t \equiv \Delta / c \equiv$ duration Bf pulse $=$ what we want to estimate

Estimate of $\Delta \omega \mathrm{pg} .2$
See figures!
(1) At time T, at the saurce (retarded time) the spotlight is starting to point in your angular direction. The leading front is emitted
(2) The strobelight will point in your direction for a time set by the angular width of radiation cone $\alpha \sim \frac{1}{\gamma}$, and the angular velocity:

$$
\begin{gathered}
\Delta T=T_{2}-T_{1}=\frac{\alpha}{\bar{\omega}_{0}}=R_{0} \frac{\alpha}{v} \sim \frac{R_{0}}{\bar{\gamma}_{c}} \\
\uparrow \\
\omega_{0}=R_{0} / v
\end{gathered}
$$

Time at source where the spotlight stops pointing at you
(3) Then the kinematics of the emission process says, that if the radiation is formed over time ΔT then it is observed to have time scale Δt

$$
\begin{aligned}
& \Delta t=\frac{\Delta t}{\Delta T} \Delta T=(1-n \cdot \beta) \frac{R_{0}}{\bar{\partial} v} \sim \frac{\left(1+(\gamma \theta)^{2}\right)}{2 \gamma^{2}} \frac{R_{0}}{\gamma_{c}} \\
& \Delta t \sim \frac{R_{0} / c}{\gamma^{3}}
\end{aligned}
$$

Figure Credit: Christina Athanasion et al, arXiv: 1001.3880

Estimate pg. 3
Can also see from geometry $\overbrace{\sim}^{\frac{1}{\gamma}} \overbrace{}^{1 / \gamma^{2}}$

$$
c \Delta t=R_{0} \alpha c-R_{0} \alpha=R_{0} \alpha\left(\frac{1}{\beta}-1\right)
$$

$\Delta t \sim \frac{R_{0} / c}{\gamma^{3}}$

And

$$
\Delta \omega \sim \frac{\gamma^{3}}{\left(R_{0} / c\right)}
$$

The Fourier Spectrum
Energy

time

$$
\frac{d W}{d t d \Omega}=\underset{\text { rad }}{c|r E(t)|^{2}} \underset{\text { time }}{\text { tine per observers }}
$$

So

$$
\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} d t c \underset{\operatorname{rad}}{\infty} d t
$$

Using Parsevals Them (Proved in Homework \#|)

$$
\frac{d W}{d \Omega}=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} c\left|r E_{\operatorname{rad}}(\omega)\right|^{2}
$$

Where

$$
\begin{aligned}
& E_{\mathrm{rad}}(\omega)=\int_{-\infty}^{\infty} e^{\text {ti wt }} E_{\mathrm{rad}}(t) \\
& E_{\mathrm{rad}}(t)=\int_{-\infty}^{\infty} e^{-i \omega t} E_{\mathrm{rad}}(\omega)
\end{aligned}
$$

Fourier Spectrum pg. 2
So we have that

$$
2 \pi \frac{d W}{d \omega d \Omega}=c\left|r E_{\mathrm{rad}}(\omega)\right|^{2}
$$

The sign of ω is not physically relevant. Since $E(t)$ is real $E(-\omega)=E^{*}(\omega)$. Thus define (also incorparating 1 a 2π)

$$
\begin{aligned}
& \frac{d I}{d \omega d \Omega} \equiv \frac{c}{2 \pi}\left(\left|r E_{\mathrm{rad}}(\omega)\right|^{2}+\left|r E_{\mathrm{rad}}(-\omega)\right|^{2}\right) \\
& \frac{d T}{d \omega d \Omega}=\frac{c}{\pi}\left|r E_{\operatorname{rad}}(\omega)\right|^{2} \quad \text { with } w>0
\end{aligned}
$$

So that

$$
\frac{d W}{d \Omega}=\int_{0}^{\infty} \frac{d I}{d w d \Omega} d \omega
$$

So the number of photons between $\omega+(w+d w)$ th $\frac{d N}{d \omega d \Omega} d \omega=\frac{d I}{d \omega d \Omega} d \omega$

