Last Time

(1). Initially consider scattering from small objects $k a \ll 1$, so that the incoming field may be considered constant over the size of object. Or consider weak Scattering $E_{\text {scat }}<E_{\text {inc }}$
(2) Studied Thompson Scattering (Light Electron)

$$
e+\gamma \rightarrow e+\gamma
$$

Then

$$
\begin{aligned}
& \bar{P}=\frac{q^{2}}{4 \pi} \frac{2}{3 c^{3}} \frac{a^{2}}{R} \text { accelerated accel } \\
& \text { rad ion due to } \\
& \text { incoming field } \\
& \text { average } \\
& \text { energy radiated } \\
& \text { per time }
\end{aligned}
$$

Last Time pg. 2
Then

$$
\vec{a}=q \vec{\varepsilon}_{0} \frac{E_{0}^{0}}{e^{-i \omega t}}=\frac{\vec{E}}{m} \Rightarrow \vec{a}^{2}=\frac{q^{2} E_{0}^{2}}{(2) m^{2}}
$$

S_{0} then we defined σ :

$$
\sigma=\text { Power Radiated }
$$

Ave Incoming Energy flux

$$
\begin{aligned}
& \sigma= \frac{q^{2}}{4 \pi} \frac{2}{3 c^{3}} \frac{q^{2}}{2 m} E_{0}^{2} \\
& \frac{1}{2} c E_{0}^{2} \\
&= \frac{8 \pi}{3}\left(\frac{q^{2}}{4 \pi m c^{2}}\right)^{\sum r_{e}}
\end{aligned}
$$

Thus

$$
r_{e}=2.8 \mathrm{fm}_{\mathrm{m}}=\alpha{\lambda_{c}}_{c}
$$

and

$$
\sigma=0.66 \text { barns }
$$

Polarization in Thompson Scattering

The incoming light has polarization $\varepsilon_{0}^{\prime \prime}$ or ε_{0}^{\perp}. The power radiated per solid angle with polarization ε (either $\varepsilon^{\prime \prime}$ or $\varepsilon_{\mathcal{1}}$) is for harmonic, $E_{\text {rad }}(t)=E_{\text {rad, } \omega} e^{-i \omega t}$

$$
\left.\frac{d \bar{P}(\vec{\varepsilon}}{d \Omega} ; \stackrel{\rightharpoonup}{\varepsilon}\right)=\frac{c}{2}\left|r \vec{\varepsilon}^{*} \cdot E_{\text {rad, }}\right|^{2}
$$

The cross section for light of a given polarization is the power by the incoming average flux

$$
\begin{aligned}
& \frac{d \sigma\left(\varepsilon ; \varepsilon_{0}\right)=\frac{d P / d \Omega\left(\varepsilon ; \varepsilon_{0}\right)}{\frac{1}{2} c|E|^{2}}\left\{\begin{array}{l}
E_{\text {rad }}(t)=E_{0} \vec{f}(k) \frac{e^{i k r-i \omega t}}{r}
\end{array}\right]}{l} \\
& \begin{array}{l}
=\left|\varepsilon^{*} \cdot f(k)\right|^{2} \\
=r_{e}^{2}\left|\varepsilon^{*} \cdot \varepsilon_{0}\right|^{2}
\end{array} \\
& \text { we will show } \\
& \text { this in the } \\
& \text { next pages }
\end{aligned}
$$

Polarization Pg. 2
First Recall

$$
E_{r a d}^{(t)}=n \times n \times \frac{1}{c} \frac{\partial A}{\partial t}+\frac{q}{4 \pi r c^{2}} n \times n \times \stackrel{a}{a}\left(t_{e}\right)
$$

Lets Rederive this result, by approximating Lienard-Wiechert

$$
\begin{array}{rlrl}
A_{\text {cad }}^{(t)}=\frac{q}{4 \pi r} \frac{V(T) / c}{(1-n \cdot V(T) / c)} & T & =t-\frac{r}{c}+\frac{\left.n \cdot r_{*}(T)\right)}{c} \\
& \simeq t-\frac{r}{c} \equiv t_{c}
\end{array}
$$

The non-rel approximation replaces $T \simeq t_{e}=t-\frac{r}{c}$, and expands $V / k \ll 1$,

$$
A_{\text {rad }}^{(t)} \simeq \frac{q}{4 \pi r} \vec{V}\left(t_{e}\right) / c
$$

And so

$$
E_{r a d}=\frac{q}{4 \pi r c^{2}} n \times n \times \vec{a}\left(t_{e}\right)
$$

The acceleration is along $\stackrel{\rightharpoonup}{\varepsilon}_{0}$

$$
\vec{a}=\vec{\varepsilon}_{0} \frac{q}{m} E_{0} e^{-i \omega t} \equiv a_{\omega} e^{-i \omega t}
$$

Then we want to compute

$$
\left(\left.\varepsilon^{*} \cdot E_{\mathrm{rad}, \omega}\right|^{2} \alpha\left|\varepsilon^{*} \cdot(n \times n \times \stackrel{\rightharpoonup}{a})\right|^{2}\right.
$$

f final polarization

Polarization Pg. 3
Using $b(a c)-(a b) c$

$$
\vec{\varepsilon}^{*} \cdot(n \times n \times a)=\varepsilon_{w}^{*} \cdot\left(-\vec{a}+\vec{n}\left(\vec{n} \cdot \vec{a}_{w}\right)\right)
$$

$=-\vec{\varepsilon}^{*} \cdot \vec{a}_{\omega}$ (since ε^{*} is transverse to \vec{n} it projectso out the longitudinal pieces)
Then

$$
\overline{\left|\varepsilon_{0} \cdot n \times n \times a(t)\right|^{2}}=\frac{q^{2}}{m^{2}} \frac{1}{2}\left|E_{0}\right|^{2}\left|\varepsilon^{*} \cdot \stackrel{\rightharpoonup}{\varepsilon}_{0}\right|^{2}
$$

So we compute:

$$
\begin{aligned}
& \frac{d \sigma\left(\vec{\varepsilon} ; \vec{\varepsilon}_{0}\right)}{d \Omega}=\frac{d \vec{P} / d \Omega}{\frac{c}{2}\left|E_{0}\right|^{2}}=\frac{\frac{1}{2}}{r^{2}\left|\varepsilon^{*} \cdot E_{\omega}^{r a d}\right|^{2}} \\
& \frac{1}{2} c\left|E_{0}\right|^{2} \\
&=\underbrace{\left(\frac{q^{2}}{4 \pi m c^{2}}\right)^{2}\left|\varepsilon^{*} \cdot \varepsilon_{0}\right|^{2}} \\
& \frac{D \sigma\left(\varepsilon ; \varepsilon_{j}\right)}{}=r_{e}^{2}\left|\varepsilon_{e}^{*} \cdot \varepsilon_{0}\right|^{2}
\end{aligned}
$$

Transverse and Parallel polarized Cross section
There are four cases here

(1) $\varepsilon_{11}^{*} \cdot \varepsilon_{11}=\cos \theta$ (see figure)
(2) $\varepsilon_{1}^{0 *} \cdot \varepsilon_{1}=1$
(3) $\varepsilon_{11}^{0 *} \cdot \varepsilon_{1}=0$
(4) $\varepsilon_{1}^{0^{*}} \cdot \varepsilon_{11}=0$

So the cross section for initially unpolarized light (ie. $\vec{\Sigma}^{\circ}$ is 50% of time 11450% of time 1) to produce light polarized in the $\#$ or 1 direction

$$
\begin{aligned}
\frac{d \sigma_{4}}{d \Omega} & =\frac{1}{2}\left[\frac{d \sigma}{d \Omega}\left(\varepsilon_{11} ; \varepsilon_{11}^{0}\right)+\frac{d \phi}{d \Omega}\left(\varepsilon_{\|} ; \varepsilon_{1}^{0}\right)\right] \\
& =\frac{1}{2} r_{e}^{2} \cos ^{2} \theta \\
\frac{d \sigma}{d \Omega} & =\frac{1}{2}\left[\frac{d \sigma}{d \Omega}\left(\varepsilon_{1} ; \varepsilon_{11}^{0}\right)+\frac{1}{2} \frac{d \sigma}{d \Omega}\left(\varepsilon_{1}, \varepsilon_{1}^{0}\right)\right] \\
& =\frac{1}{2} r^{2}
\end{aligned}
$$

Transverse and II polarized cross sections Pg. 2
The cross section to produce light of any polarization by initially unpolarized light is

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{d \sigma_{11}}{d \Omega}+\frac{d \sigma_{1}}{d \Omega} \\
& =r_{e}^{2}\left(\frac{1+\cos ^{2} \theta}{2}\right)
\end{aligned}
$$

The degree of polarization depends on the angle

$$
\frac{d \text { degree }}{\text { ot pol }}=\frac{d \sigma_{1}-d \sigma_{1 t}}{d \sigma_{1}+d \sigma_{11}}=\frac{\left(1-\cos ^{2} \theta\right)}{\left(1+\cos ^{2} \theta\right)}
$$

Question: Why is the light 100% transversely polarized at 90° ?

Ans. : At $90^{\circ} /$ a, the current is up and down for the parallel case. Thus there is no component of the current transverse

II and 1 cross sections pg. 3
Ans: continued...
to the observation. Thus the cross section for this case vanishes

$$
\prod_{-\theta=90^{\circ}}^{1 n}
$$

upand down acceleration

Dipole Scattering - Scattering By Small Objects

- Or why the sky is blue
- What means small? $k a \ll 1$

Wave view

The small sphere experiences a uniform electric o magnetic field

Sphere View
Electric field is constant
 and slowly varying

$$
E=E_{0} \vec{\varepsilon} e^{-i \omega t}
$$

Dipole Scattering
The electric field induces a dipole moment which radiates. Lets quickly rederive the radiation field

$$
\begin{aligned}
& \vec{A}_{\text {rad }}=\frac{1}{4 \pi r} \int \frac{\vec{J}}{\bar{c}}\left(T, r_{0}\right) d^{3} r_{0} \\
& T=t-\frac{r}{c}+\frac{n \cdot r_{0}}{c} \approx t-\frac{r}{c}
\end{aligned}
$$

So

$$
A_{r a d}(t, r) \simeq \frac{1}{4 \pi r} \int \frac{J}{c}\left(t-\frac{r}{c}, r_{0}\right) d^{3} r_{0}
$$

For a dipole at origin:

$$
\vec{J}=\partial_{t} \vec{p} \quad \delta^{3}(\vec{r})
$$

So
Can also derive this \star more formally

$$
A_{\operatorname{rad}}(t, r)=\frac{1}{4 \pi r} \frac{1}{c} \dot{p}\left(t_{e}\right)
$$ see past lectures

Then we find

$$
\begin{aligned}
& E_{\text {rad }}=n \times n \times \partial A_{\text {rad }} \\
& c \partial t \\
&=\frac{1}{4 \pi r c^{2}} n \times n \times \ddot{p}=\frac{1}{4 \pi r c^{2}}(-\ddot{p}+\vec{n}(n \ddot{p}))
\end{aligned}
$$

Dipole Scattering pg. 2
Then the time averaged power radiated is

$$
\begin{aligned}
\frac{d \bar{p}}{d \Omega} & =c \overline{\left(r E_{\mathrm{rad}}\right)^{2}} \\
& =\frac{1}{16 \pi^{2} c^{3}} \overline{(-\ddot{p}+\vec{n} \cdot(n \cdot \ddot{p}))^{2}}=\frac{1}{16 \pi^{2} c^{3}}\left(\ddot{p}^{2}-(n \cdot \ddot{p})^{2}\right)
\end{aligned}
$$

For a sinusoidal dipole moment $\vec{p}=p_{\omega} e^{-i \omega t}$ find

$$
\frac{d \bar{p}}{d \Omega}=\frac{1}{16 \pi^{2} c^{3}} \frac{\omega^{4}}{2}\left(p_{\omega} \cdot p_{\omega}^{*}-\left(n \cdot p_{\omega}\right)\left(n \cdot p_{\omega}^{*}\right)\right)
$$

The induced dipole moment is proportional to in coming field

$$
\vec{p}=\alpha_{E} \vec{E}_{\text {inc }} \quad \alpha_{E}=4 \pi\left(\frac{\varepsilon-1}{\varepsilon+2}\right) a^{3}
$$

 induced charges on a dielectric Sphere in a const field,
So with $\vec{E}_{i n c}=\overrightarrow{\varepsilon_{0}} E_{0} e^{-i \omega t}$

$$
\vec{p}=\underbrace{\alpha_{L} E_{0} \varepsilon_{0}}_{\equiv p_{\omega}} e^{-i \omega t}
$$

And

$$
\frac{d \bar{P}}{d \Omega}=\frac{1}{16 \pi^{2} c^{3}} \omega^{4} \frac{1}{2} \alpha_{E}^{2} E_{0}^{2}\left(1-\left(n-\varepsilon_{0}\right)\left(n \cdot \varepsilon_{0}^{*}\right)\right)
$$

The cross section is the averaged power by the incoming flux

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{d \bar{P} / d \Omega}{\frac{1}{2} c E_{0}^{2}} \\
& \frac{d \sigma}{d \Omega}=\frac{1}{16 \pi^{2}}\left(\frac{\omega}{c}\right)^{4} \alpha_{E}^{2}\left(1-\left.\ln \cdot \varepsilon\right|^{2}\right)
\end{aligned}
$$

DOr

$$
\frac{d \sigma}{d \Omega}=\left(\frac{\varepsilon-1}{\varepsilon+2}\right)^{2}\left(\frac{\omega a}{c}\right)^{4} a^{2}\left(1-|n \cdot \varepsilon|^{2}\right)
$$

Important Remarks

- See a characteristic frequency dependence to dipole scattering

$$
\sigma \propto \omega^{4}
$$

- Dimensions fix the remaing factors

$$
\sigma \propto\left(\frac{\omega a}{c}\right)^{4} a^{2}
$$

Why Sky is Blue?
$\sigma \propto \omega^{4}$ so most of the scatterced light sun is at high frequency.
Midday

- molecule
$\pm \longleftarrow$ The higher frequencies are preferentially

Higher frequencies = bluer

At Sunset, the blue light is scattered away and only the red light traverses the atmosphere to reach our eyes

Last Time

- Discussed Scattering of Light By small objects

Wave View

Sphere View

\leftarrow Sphere sees a constant field

Then the setup is:

Notation:

$$
\begin{aligned}
& E(t, r)=E_{\omega}(r) e^{-i \omega t} \text { so } E_{i n c, \omega}(\vec{r})=E_{0} \varepsilon_{0} e^{i k z} \\
& E_{s c a t, \omega}(r)=E_{0} \vec{f}(k) e^{i k r} / r
\end{aligned}
$$

Last Time pg. 2
Then the incoming field induces a time dependent dipole moment which radiates

$$
\begin{aligned}
\vec{p}(t) & =\alpha_{E} E_{i n}(t) \\
& =\underbrace{\alpha_{E} \overrightarrow{\varepsilon_{0}} E_{0} e^{-i \omega t}}_{\equiv P_{\omega}}
\end{aligned}
$$

For a dielectric sphere

$$
\alpha_{E}=4 \pi\left(\frac{\varepsilon-1}{\varepsilon+2}\right) a^{3}
$$

Thew

$$
\begin{aligned}
\frac{d \bar{p}}{d \Omega} & =\frac{1}{16 \pi^{2} c^{3}}|n \times n \times \ddot{p}(t)|^{2} \\
& =\frac{\omega^{4}}{16 \pi^{2} c^{3}}\left|n \times n \times p_{\omega}\right|^{2} \frac{1}{2 \leftarrow \text { time ave }}
\end{aligned}
$$

Then the cross section after a bit of algebra is

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{d \bar{P} / d \Omega}{\left(c E_{0}^{2} / 2\right)}=\frac{1}{16 \pi^{2}} \alpha_{E}^{2}\left(\frac{\omega}{c}\right)^{4}\left(1-\left|\varepsilon_{0} \cdot n\right|^{2}\right) \\
& \underset{\text { ave incoming } f \ln x}{ }
\end{aligned}
$$

This is the unpolarized cross section

Homework: Show that the polarized cross section is

$$
\frac{d \sigma}{d \Omega}\left(\varepsilon ; \varepsilon_{0}\right)=\frac{1}{16 \pi^{2}} \alpha_{E}^{2}\left(\frac{\omega}{c}\right)^{4}\left|\varepsilon^{*} \cdot \varepsilon_{0}\right|^{2}
$$

Relation Between Scattering Amplitude and Currents

The radiated field

$$
A_{\text {rad }}=\frac{1}{4 \pi r} \int d^{3} r_{0} J\left(T, r_{0}\right)
$$

For sinusoidal currents $\quad J(t)=J_{\omega} e^{-i \omega t}$

$$
\begin{aligned}
T & =t-\frac{r}{c}+\frac{n \cdot r_{0}}{c} \\
\vec{A}_{r a d} & =\frac{1}{4 \pi r} e^{-i \omega(t-r / c)} \int d^{3} r_{0} \vec{J}_{\vec{c}^{-0}}\left(r_{0}\right) e^{-i \frac{\omega}{c} n \cdot r_{0}} \\
& =\frac{1}{4 \pi r} e^{-i \omega t+i k r} \int d^{3} r_{0} \frac{\vec{J}_{\omega}\left(r_{0}\right) e^{-i \vec{k} \cdot r_{0}}}{c}
\end{aligned}
$$

Now

$$
\begin{aligned}
E_{\text {rad }} & =n \times n \times \frac{1}{c} \frac{\partial A_{c a d} \partial t}{\partial t} \\
& =\frac{-i \omega}{4 \pi r c} e^{-i \omega t+i k r} n \times n \times \int d^{3} r_{0} \vec{J}_{\vec{c}}\left(r_{0}\right) e^{-i \vec{k} \cdot r_{0}}
\end{aligned}
$$

Comparison gives $\quad E_{\text {rad }}=E_{0} e^{i k r-i w t} \vec{f}(k)$

$$
\frac{1}{f}(k)=-\frac{i k}{4 \pi E_{0}} n \times n \times \int d^{3} r_{0} J_{\bar{c}}\left(r_{0}\right) e^{-i k \cdot r}
$$

And thus using $|n \times n x V|^{2}=|n x V|^{2}$ we have

$$
\frac{d \sigma}{d \Omega}=|\vec{f}(k)|^{2}=\frac{k^{2}}{16 \pi^{2} E_{0}^{2}}\left|n x \int d^{3} r_{6} \frac{J_{\omega}\left(r_{0}\right) e^{-i \vec{k} \cdot r_{0}}}{c}\right|^{2}
$$

This explicitly shows how the induced currents determine the cross section

Born Approximation

- To procede further we need to specify the currents. For dielectric Media $J(t)=\partial_{t} P=x_{e} \partial_{t} E$

$$
\vec{f}_{\omega}(r)=-i \omega x(\omega, r) \quad E_{\omega}(r)
$$

- Then in a weak field approximation we can consider the current to arise solely from the incoming light.

$$
\begin{aligned}
j_{\omega}(r) & =-i \omega x(\omega)\left(E_{\omega}^{i n c}(r)+E_{\omega}^{\text {scott }}(r)\right) \\
& \simeq-i \omega x(\omega) E_{\omega}^{i n c}(r)
\end{aligned}
$$

Born Approx pg. 2
Now define $\vec{k}_{0} \equiv k \hat{z} \simeq$ incoming wave vector

$$
E_{i n c}(t)=[\underbrace{\left[E _ { 0 } \left(\overrightarrow{\varepsilon_{0}}\right.\right.}_{E_{\omega}^{i n c}} \vec{e}^{i \vec{k}_{0} \cdot \vec{r}_{0}}] e^{-i \omega t} e^{i \vec{k}_{0} \vec{r}_{0}}=e^{i k z_{0}}
$$

So $\quad j_{\omega}(r)=-i \omega \chi(\omega, r) E_{0} \varepsilon_{0} e^{i \vec{k}_{0} \cdot r_{0}}$
And plugging into Eq on the previous page:

$$
\frac{d \sigma}{d \Omega}=\frac{\cdot k^{2}}{16 \pi^{2} E_{0}^{2}}\left|n x \int_{r_{0}} \frac{-i \omega}{c} x\left(\omega, r_{0}\right) E_{0} \vec{\varepsilon}_{0} e^{i \vec{k}_{0} \cdot r_{0}} e^{-i \vec{k} \cdot r_{0}}\right|^{2}
$$

And

$$
\frac{d \sigma}{d \Omega}=\left(\frac{k^{2}}{4 \pi}\right)^{2}|\vec{n} \times \vec{\varepsilon}|^{2}\left|\int d^{3} r_{0} x\left(\omega, r_{0}\right) e^{-i\left(\vec{k}-\vec{k}_{0}\right) \cdot \vec{r}_{0}}\right|^{2}
$$

Example (1)
Two Examples (ω) Born Approximation -Dipole Limit
(1) Long wavelength Limit $k \cdot L \ll 1$, then you can neglect the phase, finding

$$
\int d^{3} r_{0} x(w, r) \cdot \dot{y}=x(w) V \equiv \alpha_{E}
$$

$$
\begin{array}{r}
\text { The total dipole } \\
\text { moment is } \\
\vec{p}=\underbrace{x V}_{\alpha_{E}} \vec{E}
\end{array}
$$

$$
\rightarrow
$$

Scattering obj @ const polarizability and volume V

Thus in this limit:

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\left(\frac{k^{2}}{4 \pi}\right)^{2}\left|n \times \varepsilon_{0}\right|^{2} \alpha_{E}^{2} \\
& =\frac{\alpha_{E}^{2}}{16 \pi^{2}}\left(\frac{\omega}{c}\right)^{4}\left(1-\left(n \cdot \varepsilon_{\Delta}\right)^{2}\right)
\end{aligned}
$$

This is the

For the dielectric sphere:

$$
\begin{aligned}
\frac{\alpha}{E} & =4 \pi\left(\frac{\varepsilon-1}{\varepsilon+2}\right) a^{3} \\
& \simeq \underbrace{\left(4 \pi a^{3}\right)}_{V} \underbrace{(\varepsilon-1)}_{X}
\end{aligned}
$$

same dipole scattering we discussed in the beginning.

Born Approx Ex. 2
Example 2
of radius R
(2) For a solid sphere ${ }^{\wedge}$ the cross section is proportional to

$$
x(\omega, \vec{q})=\int_{\text {sphere }} d^{3} r x(\omega, r) e^{i \stackrel{\rightharpoonup}{q} \cdot \vec{r}} \quad \stackrel{\rightharpoonup}{q} \equiv \vec{k}-\vec{k}
$$

$$
=2 \pi x(\omega) \int_{0}^{R} r^{2} d r \int_{-1}^{1} d(\cos \theta) e^{i q r \cos \theta}
$$

$$
=2 \pi x(w) \int^{R} r^{2} d r(\sin q r) \quad j_{0}(q r) \equiv \frac{\sin q r}{q r}
$$

$$
\begin{aligned}
& =2 \pi x(w) \int_{0}^{R} r^{2} d r\left(\frac{\sin q r}{q r}\right) \\
& =4 \pi R^{3} x(w) \quad \overline{q r} \\
& j_{1} \frac{(q R)}{q R} \quad j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}
\end{aligned}
$$

Now thew we- have to work out
$\left|n \times \varepsilon_{0}\right|^{2}$ averaged over polarizations of incoming light

v

Born Approx Sphere - Example ${ }^{(2)}$ pg, 2
Then using $\left|n \times \varepsilon_{0}\right|^{2}=\left(1-\left.\ln \cdot \varepsilon_{0}\right|^{2}\right)$ we have

$$
\begin{aligned}
& \left|n \times \varepsilon_{0, \prime}\right|^{2}=\left(1-\sin ^{2} \theta\right)=\cos ^{2} \theta \\
& \left|n \times \varepsilon_{01}\right|^{2}=(1-0)=1
\end{aligned}
$$

So
ave $|\vec{n} \times \vec{\varepsilon}|^{2}$ over pols $=\frac{1+\cos ^{2} \theta}{2}$
And finally we need:

$$
\vec{k}_{0}=k \hat{z}
$$

$$
\begin{aligned}
q=|\vec{g}|=\sqrt{\left|\vec{k}-\vec{k}_{0}\right|^{2}} & =\left(\vec{k}^{2}-2 \vec{k} \cdot \vec{k}_{0}+\vec{k}_{0}^{2}\right)^{1 / 2} \\
& =\left[2 k^{2}(1-\cos \theta)\right]^{1 / 2} \\
& =\left(4 k^{2} \sin ^{2} \theta / 2\right)^{1 / 2}=2 k \sin \theta / 2
\end{aligned}
$$

So we find

$$
\left(\frac{d \sigma}{d R}\right)_{\text {scat }} \sim \frac{R^{2}}{4}\left(k_{0} R\right)^{2} x^{2}\left(\frac{1+\cos ^{2} \theta}{2}\right) \dot{j}_{1}^{2} \frac{(2 k R \sin \theta / 2)}{\sin ^{2} \theta / 2}
$$

The unpolarized cross section for for a sphere of radius R scattering light of wave number k is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \simeq \frac{R^{2}}{4}(k R)^{2} \chi^{2}(\omega)\left[\frac{1+\cos ^{2} \theta}{2}\left(\frac{j_{1}(2 k R \sin \theta / 2)}{\sin \theta / 2}\right)^{2}\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
j_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x} \tag{2}
\end{equation*}
$$

is the sphereical bessel function. The term in square brackets is plotted below.

