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I. FINISHING UP PROBLEM ON GREEN THEOREM

First we have
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In the first step we integrate over z
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getting
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Green theorem in 2D!

(1.2)

Now we perform do the di↵erentiation with respect to y

o

; then set y
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= 0, yielding
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Finally doing the integral over x

o

we have
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We can use some geometric identities of the arctan
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yielding
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Remarks:

• This satisfies the boundary conditions.

• As might have been anticipated the solution is only a function of y/x. This could have

been anticipated on the basis of dimensional analysis. There is no other length scale

L so that the potential could be written as '(x) = f(x/L, y/L). Further the only

quantity which has dimensions of voltage is V

o

thus from the get go we know that

'(x) = V

o
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Another way to approach this problem is just substitute this form into the Laplace

equation and integrate to determine f(y/x).

• Di↵erentiating the potential to find the electric field
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This seems reasonable to me.
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