1 Introduction

1.1 The maxwell equations and units: lecture 1

General Intro and Expansion in $1 / c$

- We use Heavyside Lorentz system of units. This is discussed in a separate note
- The Maxwell force law

$$
\begin{equation*}
\boldsymbol{F}=q\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right) \tag{1.1}
\end{equation*}
$$

- The Maxwell equations are

$$
\begin{align*}
\nabla \cdot \boldsymbol{E} & =\rho \tag{1.2}\\
\nabla \times \boldsymbol{B} & =\frac{\boldsymbol{j}}{c}+\frac{1}{c} \partial_{t} \boldsymbol{E} \tag{1.3}\\
\nabla \cdot \boldsymbol{B} & =0 \tag{1.4}\\
\nabla \times \boldsymbol{E} & =-\frac{1}{c} \partial_{t} \boldsymbol{B} \tag{1.5}
\end{align*}
$$

We specify the currents and solve for the fields. In media we specify a constituent relation relating the current to the electric and magnetic fields.

- Current conservation follow by taking the divergence of the second equation

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0 \tag{1.6}
\end{equation*}
$$

- For a system of characteristic length L (say one meter) and characteristic time scale T (say one second), we can expand the fields in $1 / c$ since $(L / T) / c \ll 1$:

$$
\begin{align*}
& \boldsymbol{E}=\boldsymbol{E}^{(0)}+\boldsymbol{E}^{(1)}+\boldsymbol{E}^{(2)}+\ldots \tag{1.7}\\
& \boldsymbol{B}=\boldsymbol{B}^{(0)}+\boldsymbol{B}^{(1)}+\boldsymbol{B}^{(2)}+\ldots \tag{1.8}
\end{align*}
$$

where each term is smaller than the next by $(L / T) / c$. At zeroth order we have

$$
\begin{align*}
\nabla \cdot \boldsymbol{E}^{(0)} & =\rho \tag{1.9}\\
\nabla \times \boldsymbol{E}^{(0)} & =0 \tag{1.10}\\
\nabla \cdot \boldsymbol{B}^{(0)} & =0 \tag{1.11}\\
\nabla \times \boldsymbol{B}^{(0)} & =0 \tag{1.12}
\end{align*}
$$

These are the equations of electro statics. Note that $\boldsymbol{B}^{(0)}=0$ to this order (for a field which is zero at infinity)

- At first order we have

$$
\begin{align*}
\nabla \cdot \boldsymbol{E}^{(1)} & =0 \tag{1.13}\\
\nabla \times \boldsymbol{E}^{(1)} & =0 \quad\left(\text { since } \partial_{t} \boldsymbol{B}^{(0)}=0\right) \tag{1.14}\\
\nabla \cdot \boldsymbol{B}^{(1)} & =0 \tag{1.15}\\
\nabla \times \boldsymbol{B}^{(1)} & =\frac{\boldsymbol{j}}{c}+\frac{1}{c} \partial_{t} \boldsymbol{E}^{(0)} \tag{1.16}
\end{align*}
$$

This is the equation of magneto statics, with the contribution of the Maxwell term computed with electrostatics. Note that $\boldsymbol{E}^{(1)}=0$

2 Electrostatics

2.1 Elementary Electrostatics

Electrostatics:

(a) Fundamental Equations

$$
\begin{align*}
\nabla \cdot \boldsymbol{E} & =\rho \tag{2.1}\\
\nabla \times \boldsymbol{E} & =0 \tag{2.2}\\
\boldsymbol{F} & =q \boldsymbol{E} \tag{2.3}
\end{align*}
$$

(b) Given the divergence theorem, we may integrate over volume of $\nabla \cdot \boldsymbol{E}=\rho$ and deduce Gauss Law:

$$
\int_{S} \boldsymbol{E} \cdot d \boldsymbol{S}=q_{\mathrm{tot}}
$$

which relates the flux of electric field to the enclosed charge
(c) For a point charge $\rho(\boldsymbol{r})=q \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)$ and the field of a point charge

$$
\begin{equation*}
\boldsymbol{E}=\frac{q \widehat{\boldsymbol{r}-\boldsymbol{r}_{o}}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|^{2}} \tag{2.4}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
\nabla \cdot \frac{q \widehat{\boldsymbol{r}-\boldsymbol{r}_{o}}}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|^{2}}=q \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right) \tag{2.5}
\end{equation*}
$$

(d) The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as gradient of a scalar

$$
\begin{equation*}
\boldsymbol{E}=-\nabla \Phi \quad \Phi\left(\boldsymbol{x}_{b}\right)-\Phi\left(\boldsymbol{x}_{a}\right)=-\int_{a}^{b} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{\ell} \tag{2.6}
\end{equation*}
$$

The potential satisfies the Poisson equation

$$
\begin{equation*}
-\nabla^{2} \Phi=\rho \tag{2.7}
\end{equation*}
$$

The Laplace equation is just the homogeneous form of the Poisson equation

$$
\begin{equation*}
-\nabla^{2} \Phi=0 \tag{2.8}
\end{equation*}
$$

The next section is devoted to solving the Laplace and Poisson equations
(e) The boundary conditions of electrostatics

$$
\begin{array}{r}
\boldsymbol{n} \cdot\left(\boldsymbol{E}_{2}-\boldsymbol{E}_{1}\right)=\sigma \\
\boldsymbol{n} \times\left(\boldsymbol{E}_{2}-\boldsymbol{E}_{1}\right)=0 \tag{2.10}
\end{array}
$$

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel components are continuous.
(f) The Potential Energy stored in an ensemble of charges is

$$
\begin{equation*}
U_{E}=\frac{1}{2} \int \mathrm{~d}^{3} x \rho(\boldsymbol{r}) \Phi(\boldsymbol{r}) \tag{2.11}
\end{equation*}
$$

(g) The energy density of an electrostatic field is

$$
\begin{equation*}
u_{E}=\frac{1}{2} E^{2} \tag{2.12}
\end{equation*}
$$

(h) Force and stress
i) The stress tensor records $T^{i j}$ records the force per area. It is the force in the j-th direction per area in the i-th. More precisely let \boldsymbol{n} be the (outward directed) normal pointing from region LEFT to region RIGHT, then
$n_{i} T^{i j}=$ the j-th component of the force per area, by region LEFT on region RIGHT
ii) The total momentum density $\mathbf{g}_{\text {tot }}$ (momentum per volume) is supposed to obey a conservation law

$$
\begin{equation*}
\partial_{t} g_{\mathrm{t} o t}^{j}+\partial_{i} T^{i j}=0 \quad \partial_{t} g_{\mathrm{t} o t}^{j}=-\partial_{i} T^{i j} \tag{2.14}
\end{equation*}
$$

Thus we interpret the force per volume f^{j} as the (negative) divergence of the stress

$$
\begin{equation*}
f^{j}=-\partial_{i} T^{i j} \tag{2.15}
\end{equation*}
$$

iii) The stress tensor of a gas or fluid at rest is $T^{i j}=p \delta^{i j}$ where p is the pressure, so the force per volume \boldsymbol{f} is the negative gradient of pressure.
iv) The stress tensor of an electrostatic field is

$$
\begin{equation*}
T_{E}^{i j}=-E^{i} E^{j}+\frac{1}{2} \delta^{i j} E^{2} \tag{2.16}
\end{equation*}
$$

Note that I will use an opposite sign convention from Jackson: $T_{\text {me }}^{i j}=-T_{\text {Jackson }}^{i j}$. This convention has some good features when discussing relativity.
v) The net electric force on a charged object is

$$
\begin{equation*}
F^{j}=\int \mathrm{d}^{3} x \rho(\boldsymbol{r}) E^{j}(\boldsymbol{r})=-\int d S n_{i} T^{i j} \tag{2.17}
\end{equation*}
$$

(i) For a metal we have the following properties
i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per area σ is related to the magnitude of the electric field. Let \boldsymbol{n} be pointing from inside to outside the metal:

$$
\begin{equation*}
\boldsymbol{E}=E_{n} \boldsymbol{n} \quad \sigma=E_{n} \tag{2.18}
\end{equation*}
$$

ii) Forces on conductors. In a conductor the force per area is

$$
\begin{equation*}
\mathcal{F}^{i}=\frac{1}{2} \sigma E^{i}=\frac{1}{2} \sigma_{n}^{2} n^{i} \tag{2.19}
\end{equation*}
$$

The one half arises because half of the surface electric field arises from σ itself, and we should not include the self-force. This can also be computed using the stress tensor
iii) Capacitance and the capacitance matrix and energy of system of conductors For a single metal surface, the charge induced on the surface is proportional to the Φ.

$$
q=C \Phi
$$

When more than one conductor is involved this is replaced by the matrix equation:

$$
q_{A}=\sum_{B} C_{A B} \Phi_{B}
$$

2.2 Multipole Expansion

Cartesian and Spherical Multipole Expansion

(a) Cartesian Multipole expansion

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges $r \gg L$ is expanded in cartesian multipole moments

$$
\begin{align*}
& \Phi(\boldsymbol{r})=\int d^{3} \boldsymbol{r}_{o} \frac{\rho\left(r_{o}\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|} \tag{2.20}\\
& \Phi(\boldsymbol{r}) \simeq \frac{1}{4 \pi}\left[\frac{q_{\mathrm{t} o t}}{r}+\frac{\boldsymbol{p} \cdot \hat{\boldsymbol{r}}}{r^{2}}+\frac{1}{2} \mathcal{Q}_{i j} \frac{\hat{\boldsymbol{r}}^{i} \hat{\boldsymbol{r}}^{j}}{r^{3}}+\ldots\right] \tag{2.21}
\end{align*}
$$

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment, and (traceless) quadrupole moments are respectively:

$$
\begin{align*}
& q_{\mathrm{tot}}=\int \mathrm{d}^{3} x \rho(\boldsymbol{r}) \tag{2.22}\\
& \quad \boldsymbol{p}=\int \mathrm{d}^{3} x \rho(\boldsymbol{r}) \boldsymbol{r} \tag{2.23}\\
& \mathcal{Q}_{i j}=\int \mathrm{d}^{3} x \rho(\boldsymbol{r})\left(3 r_{i} r_{j}-\boldsymbol{r}^{2} \delta_{i j}\right) \tag{2.24}
\end{align*}
$$

respectively. There are five independent components of the symmetric and traceless tensor (matrix) $\mathcal{Q}_{i j}$. We have implicitly defined the moments with respect to an agreed upon origin $\boldsymbol{r}_{o}=\mathbf{0}$.
(b) Forces and energy of a small charge distribution in an external field

Given an external field $\Phi(\boldsymbol{r})$ we want to determine the energy of a charge distribution $\rho(\boldsymbol{r})$ in this external field. The potential energy of the charge distribution is

$$
\begin{equation*}
U_{E}=Q_{\mathrm{t} o t} \Phi\left(\boldsymbol{r}_{o}\right)-\boldsymbol{p} \cdot \boldsymbol{E}\left(\boldsymbol{r}_{o}\right)-\frac{1}{6} \Theta^{i j} \partial_{i} E_{j}\left(\boldsymbol{r}_{o}\right)+\ldots \tag{2.25}
\end{equation*}
$$

where \boldsymbol{r}_{o} is a chosen point in the charge distribution and the $Q_{\mathrm{t} o t}, \boldsymbol{p}, \Theta^{i j}$ are the multipole moments around that point (see below).
The multipoles are defined around the point \boldsymbol{r}_{o} on the small body:

$$
\begin{align*}
Q_{\mathrm{t} o t} & =\int \mathrm{d}^{3} x \rho(\boldsymbol{r}) \tag{2.26}\\
& \boldsymbol{p}=\int \mathrm{d}^{3} x \rho(\boldsymbol{r}) \delta \boldsymbol{r} \tag{2.27}\\
\mathcal{Q}_{i j} & =\int \mathrm{d}^{3} x \rho(\boldsymbol{r})\left(3 \delta r_{i} \delta r_{j}-\delta \boldsymbol{r}^{2} \delta_{i j}\right) \tag{2.28}
\end{align*}
$$

where $\delta \boldsymbol{r}=\boldsymbol{r}-\boldsymbol{r}_{o}$.
The force on a charged object can be found by differentiating the energy

$$
\begin{equation*}
\boldsymbol{F}=-\nabla_{\boldsymbol{r}_{o}} U_{E}\left(\boldsymbol{r}_{o}\right) \tag{2.29}
\end{equation*}
$$

For a dipole this reads

$$
\begin{equation*}
\boldsymbol{F}=(\boldsymbol{p} \cdot \nabla) \boldsymbol{E} \tag{2.30}
\end{equation*}
$$

(c) Spherical multipoles. To determine the potential far from the charge we we determine the potential to be

$$
\begin{align*}
\Phi(\boldsymbol{r}) & =\int d^{3} \boldsymbol{r}_{o} \frac{\rho\left(r_{o}\right)}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|} \tag{2.31}\\
& =\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{q_{\ell m}}{2 \ell+1} \frac{Y_{\ell m}(\theta, \phi)}{r^{\ell+1}} \tag{2.32}
\end{align*}
$$

Now we characterize the charge distribution by spherical multipole moments:

$$
\begin{equation*}
q_{\ell m}=\int d^{3} \boldsymbol{r}_{o} \rho\left(\boldsymbol{r}_{o}\right)\left[r_{o}^{\ell} Y_{\ell m}^{*}\left(\theta_{o}, \phi_{o}\right)\right] \tag{2.33}
\end{equation*}
$$

You should feel comfortable deriving this using an identity we derived in class (and will further discuss later)

$$
\begin{equation*}
\frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|}=\sum_{\ell m} \frac{1}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}(\theta, \phi) Y_{\ell m}^{*}\left(\theta_{o}, \phi_{o}\right) \tag{2.34}
\end{equation*}
$$

Here

$$
\begin{align*}
& r_{>}=\text {greater of } r \text { and } r_{o} \tag{2.35}\\
& r_{<}=\text {lesser of } r \text { and } r_{o} \tag{2.36}
\end{align*}
$$

Could also notate this as

$$
\begin{equation*}
\frac{r_{<}^{\ell}}{r_{>}^{\ell+1}}=\frac{r_{o}^{\ell}}{r^{\ell+1}} \theta\left(r-r_{o}\right)+\frac{r^{\ell}}{r_{o}^{\ell+1}} \theta\left(r_{o}-r\right) \tag{2.38}
\end{equation*}
$$

I find this form clearer, since I know how to differntiate the right hand side using, $d \theta\left(x-x_{o}\right) / d x=$ $\delta\left(x-x_{o}\right)$
(d) For an azimuthally symmetric distribution only $q_{\ell 0}$ are non-zero, the equations can be simplified using $Y_{\ell 0}=\sqrt{(2 \ell+1) / 4 \pi} P_{\ell}(\cos \theta)$ to

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{\ell=0}^{\infty} a_{\ell} \frac{P_{\ell}(\cos \theta)}{r^{\ell+1}} \tag{2.39}
\end{equation*}
$$

(e) There is a one to one relation between the cartesian and spherical forms

$$
\begin{align*}
& p_{x}, p_{y}, p_{z} \leftrightarrow q_{11}, q_{10}, q_{1-1} \tag{2.40}\\
& \mathcal{Q}_{z z}, \Theta_{x x}-\Theta_{y y}, \Theta_{x y}, \Theta_{z x}, \Theta_{z y} \leftrightarrow q_{22}, q_{21}, q_{20}, q_{2-1}, q_{2-2} \tag{2.41}
\end{align*}
$$

which can be found by equating Eq. (2.31) and Eq. (2.20) using

$$
\begin{equation*}
\hat{\boldsymbol{r}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{2.42}
\end{equation*}
$$

