Problem 1. Units

(a) Show that electric field and magnetic field have units $\sqrt{(\text { force)/area }}$ or $\sqrt{\text { energy/volume }}$.
(b) A rule of thumb that you may need in the lab is that coaxial cable has a capcitance of $12 \mathrm{pF} /$ foot. That is why cable length must be kept to a minimum in high speed electronics.
The order of magnitude of this result is set by $\epsilon_{o}=8.85 \mathrm{pF} / \mathrm{m}$. In the HeavysideLorentz system capacitance is still $Q_{H L}=C_{H L} V_{H L}$. Show that $C_{H L}$ has units of meters, and that

$$
\begin{equation*}
C_{M K S}=8.85 p F\left(\frac{C_{H L}}{\text { meters }}\right) \tag{1}
\end{equation*}
$$

(c) The "impedance of the vacuum" is $Z_{o}=\sqrt{\mu_{o} / \epsilon_{o}}=376$ Ohms. This is why high frequency antennas will typically have a "radiation resistance" of this order of magnitude. As this problem will discuss, the unit of resistance is s / m for the Heavyside Lorentz system, and "the impedance of the vacuum" is $1 / c$
In Heavyside-Lorentz units Ohm's law still reads, $\boldsymbol{j}_{H L}=\sigma_{H L} \boldsymbol{E}_{H L}$, where $\sigma_{H L}$ is the conductivity, and \boldsymbol{j} is the current per area. Show that the conductivity in HeavysideLorentz has units $\left[\sigma_{H L}\right]=1 /$ seconds and that $\sigma_{M K S}=\sigma_{H L} \epsilon_{o}$. Then show that a wire of length L and radius R_{o} has resistance

$$
\begin{align*}
R_{M K S} & =376 \text { Ohms }\left(R_{H L} c\right) \tag{2}\\
& =376 \text { Ohms }\left(\frac{L c}{\pi R_{o}^{2} \sigma_{H L}}\right) \tag{3}
\end{align*}
$$

What is $\sigma_{H L}$ for copper?

Problem 2. Vector Identities

(a) Use the epsilon tensor to prove the analog of "b(ac)-(ab)c" rule for curls

$$
\begin{equation*}
\nabla \times(\nabla \times \boldsymbol{V})=\nabla(\nabla \cdot \boldsymbol{V})-\nabla^{2} \boldsymbol{V} \tag{4}
\end{equation*}
$$

Use this result, together with the Maxwell equations in the absence of charges and currents, to establish that \boldsymbol{E} and \boldsymbol{B} obey the wave equation

$$
\begin{align*}
& \frac{1}{c^{2}} \partial_{t}^{2} \boldsymbol{B}-\nabla^{2} \boldsymbol{B}=0 \tag{5}\\
& \frac{1}{c^{2}} \partial_{t}^{2} \boldsymbol{E}-\nabla^{2} \boldsymbol{E}=0 \tag{6}
\end{align*}
$$

(b) When differentating $1 / r$ we write

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{\sqrt{x^{i} x_{i}}} \tag{7}
\end{equation*}
$$

with $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}$, and use results like

$$
\begin{equation*}
\partial_{i} x^{j}=\delta_{i}^{j} \quad \partial_{i} x^{i}=\delta_{i}^{i}=d=3 \tag{8}
\end{equation*}
$$

where $d=3$ is the number of spatial dimensions. (It is usually helps to write this as d rather than 3 to get the algebra right). In this way, one finds that field due to a electric charge (monopole) is the familiar $\hat{\boldsymbol{r}} / r^{2}$
j-th component of $-\nabla(1 / r)=\left(-\nabla \frac{1}{r}\right)_{j}=-\partial_{j} \frac{1}{\sqrt{x^{i} x_{i}}}=\frac{\frac{1}{2}\left(x^{i} \delta_{j i}+x_{i} \delta_{j}^{i}\right)}{\left(x^{k} x_{k}\right)^{3 / 2}}=\frac{x_{j}}{r^{3}}=\frac{(\hat{\boldsymbol{r}})_{j}}{r^{2}}$
where $\hat{\boldsymbol{r}} \equiv \boldsymbol{n}=\boldsymbol{x} / r$.
Using tensor notation (i.e. indexed notation) show that

$$
\begin{equation*}
\nabla \times \frac{\hat{\boldsymbol{r}}}{r^{2}}=0 \tag{10}
\end{equation*}
$$

(c) Using the tensor notation (i.e. indexed notation) show that for constant vector \boldsymbol{p} (and away from $\boldsymbol{r}=0$) that

$$
\begin{equation*}
-\nabla\left(\frac{\boldsymbol{p} \cdot \boldsymbol{n}}{4 \pi r^{2}}\right)=\frac{3(\boldsymbol{n} \cdot \boldsymbol{p}) \boldsymbol{n}-\boldsymbol{p}}{4 \pi r^{3}} \tag{11}
\end{equation*}
$$

Remark: $\phi_{\text {dip }}=\boldsymbol{p} \cdot \boldsymbol{n} /\left(4 \pi r^{2}\right)$ is the electrostatic potential due to an electric dipole \boldsymbol{p}, and Eq. (11) records the corresponding electric field. Notice the $1 / r^{3}$ as opposed to $1 / r^{2}$ for the monopole, and, taking \boldsymbol{p} along the z-axis, notice how the electric field points at $\theta=0($ or $\boldsymbol{n}=\hat{\boldsymbol{z}})$ and $\theta=\pi / 2$ (or $\boldsymbol{n}=\hat{\boldsymbol{x}})$. How could you derive this using the identities on the front cover of Jackson?

Problem 3. Easy important application of Helmholtz theorems

(a) Using the source free Maxwell equations (i.e. those without ρ and \boldsymbol{j}) and the Helmholtz theorems, explain why \boldsymbol{E} and \boldsymbol{B} can be written in terms of a scalar field Φ (the scalar potential) and a vector field \boldsymbol{A} (the vector potential)

$$
\begin{align*}
\boldsymbol{B} & =\nabla \times \boldsymbol{A} \tag{12}\\
\boldsymbol{E} & =-\frac{1}{c} \partial_{t} \boldsymbol{A}-\nabla \Phi \tag{13}
\end{align*}
$$

Thus two of the four Maxwell equations are trivially solved by introducing Φ and \boldsymbol{A}.
(b) Show that \boldsymbol{A} and Φ are not unique, i.e.

$$
\begin{align*}
A_{i} & =\left(A_{\text {old }}\right)_{i}+\partial_{i} \Lambda(t, \boldsymbol{x}) \tag{14}\\
\Phi & =\left(\Phi_{\text {old }}\right)-\frac{1}{c} \partial_{t} \Lambda(t, \boldsymbol{x}) \tag{15}
\end{align*}
$$

gives the same \boldsymbol{E} and \boldsymbol{B} fields. Here $\Lambda(t, \boldsymbol{x})$ is any function. This change of fields is known as a gauge transformation of the gauge fields (Φ, \boldsymbol{A}).
(c) Now, using the sourced Maxwell equations (i.e. those with ρ and \boldsymbol{j}), show that current must obey the conservation Law

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0 \tag{16}
\end{equation*}
$$

to be consistent with the Maxwell equations.

Problem 4. Tensor decomposition

(a) Consider a tensor $T^{i j}$, and define the symmetric and anti-symmetric components

$$
\begin{align*}
& T_{S}^{i j}=\frac{1}{2}\left(T^{i j}+T^{j i}\right) \tag{17}\\
& T_{A}^{i j}=\frac{1}{2}\left(T^{i j}-T^{j i}\right) \tag{18}
\end{align*}
$$

so that $T^{i j}=T_{S}^{i j}+T_{A}^{i j}$. Show that the symmetric and anti-symmetric components don't mix under rotation

$$
\begin{align*}
& {\underline{T_{S}}}^{i j}=R_{\ell}^{i} R_{m}^{j} T_{S}^{\ell m} \tag{19}\\
& {\underline{T_{A}}}^{i j}=R_{\ell}^{i} R_{m}^{j} T_{A}^{\ell m} \tag{20}
\end{align*}
$$

This means that I don't need to know T_{A} if I want to find $\underline{T_{S}}$ in a rotated coordinate system.
Remarks: We say that the general rank two tensor is reducable to $T^{i j}=T_{S}^{i j}+T_{A}^{i j}$ into two tensors that dont mix under rotation
(b) You should recognize that an antisymmetric tensor is isomorphic to a vector

$$
\begin{equation*}
V_{i} \equiv \frac{1}{2} \epsilon_{i j k} T_{A}^{j k} \tag{21}
\end{equation*}
$$

Explain qualitatively the identity $\epsilon^{i j k} \epsilon_{\ell m k}=\delta^{i}{ }_{\ell} \delta^{j}{ }_{m}-\delta^{j}{ }_{\ell} \delta^{i}{ }_{m}$ using $\epsilon^{i j 3} \epsilon_{\ell m 3}$ as an example, and use this to show

$$
\begin{equation*}
T_{A}^{i j}=\epsilon^{i j k} V_{k} \tag{22}
\end{equation*}
$$

Remark: In matrix form this reads

$$
T_{A}=\left(\begin{array}{ccc}
0 & V_{z} & -V_{y} \tag{23}\\
-V_{z} & 0 & V_{x} \\
V_{y} & -V_{x} & 0
\end{array}\right)
$$

(c) Using the Einstein summation convention, show that the trace of a symmetric tensor is rotationally invariant

$$
\begin{equation*}
\underline{T}_{i}^{i} \equiv T_{i}^{i} \tag{24}
\end{equation*}
$$

and that

$$
\begin{equation*}
\stackrel{\circ}{T}_{S}^{i j} \equiv T^{i j}-\frac{1}{3} \delta^{i j} T_{\ell}^{\ell} \tag{25}
\end{equation*}
$$

is traceless.
Remark: A symmetric tensor is therefore reducable to a symmetric traceless tensor and a scalar times $\delta^{i j}$.

$$
\begin{equation*}
T_{S}^{i j}=\stackrel{\circ}{T}_{S}^{i j}+\frac{1}{3} \delta^{i j} T_{\ell}^{\ell} \quad \text { where } \quad \stackrel{\circ}{T}_{S}^{i j} \equiv T_{S}^{i j}-\frac{1}{3} T_{\ell}^{\ell} \delta^{i j} \tag{26}
\end{equation*}
$$

I don't need to know T_{ℓ}^{ℓ} in order to compute $\stackrel{\circ}{T}^{i j}=R_{\ell}^{i} R_{m}^{j} \stackrel{\circ}{T}_{S}^{\ell m}$

Remarks: The results of this problem show that a general second rank tensor is decomposable into irreducable components

$$
\begin{align*}
T^{i j} & =\stackrel{o}{T}_{S}^{i j}+\epsilon^{i j k} V_{k}+\frac{1}{3} T_{\ell}^{\ell} \delta^{i j} \tag{27}\\
& =\frac{1}{2}\left(T^{i j}+T^{j i}-\frac{2}{3} T_{\ell}^{\ell} \delta^{i j}\right)+\frac{1}{2} \epsilon^{i j k} \epsilon_{k \ell m} T^{\ell m}+\frac{1}{3} T_{\ell}^{\ell} \delta^{i j} \tag{28}
\end{align*}
$$

No further reduction is possible. A general result is that a fully symmetric traceless tensor is irreducable.
When this result is applied to the product of two vectors it says

$$
\begin{equation*}
E^{i} B^{j}=\frac{1}{2}\left(E^{i} B^{j}+B^{i} E^{j}-\frac{2}{3} \boldsymbol{E} \cdot \boldsymbol{B} \delta^{i j}\right)+\frac{1}{2} \epsilon^{i j k}(\boldsymbol{E} \times \boldsymbol{B})_{k}+\frac{1}{3} \boldsymbol{E} \cdot \boldsymbol{B} \delta^{i j} \tag{29}
\end{equation*}
$$

which expresses the tensor product of two vectors as the sum of an irreducable (traceless and symmetric) tensor, a vector, and a scalar, $1 \otimes 1=2 \oplus 1 \oplus 0$.

More physically it says that not all of $E_{i} B_{j}$ is really described by a tensor. Rather, part of $E_{i} B_{j}$ is described by the vector $\boldsymbol{E} \times \boldsymbol{B}$, and part is described by the scalar $\boldsymbol{E} \cdot \boldsymbol{B}$. It is for this reason that the tensors we work with in physics (i.e. the moment of inertia tensor, the quadrupole tensor, the maxwell stress tensor) are symmetric and traceless.

Problem 5. 3d delta-functions

A delta-function in 3 dimensions $\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)$ is an infinitely narrow spike at \boldsymbol{r}_{o} which satisfies

$$
\begin{equation*}
\int d^{3} \boldsymbol{r} \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)=1 \tag{30}
\end{equation*}
$$

In spherical coordinates, where the measure is

$$
\begin{equation*}
d^{3} \boldsymbol{r}=r^{2} d r d(\cos \theta) d \phi=r^{2} \sin \theta d r d \theta d \phi \tag{31}
\end{equation*}
$$

we must have

$$
\begin{equation*}
\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)=\frac{1}{r^{2}} \delta\left(r-r_{o}\right) \delta\left(\cos \theta-\cos \theta_{o}\right) \delta\left(\phi-\phi_{o}\right)=\frac{1}{r^{2} \sin \theta} \delta\left(r-r_{o}\right) \delta\left(\theta-\theta_{o}\right) \delta\left(\phi-\phi_{o}\right) \tag{32}
\end{equation*}
$$

so that $\int d^{3} \boldsymbol{r} \delta^{3}(\boldsymbol{r})=1$. For a general curvlinear coordinate system

$$
\begin{equation*}
\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)=\frac{1}{\sqrt{g}} \prod_{a} \delta\left(u^{a}-u_{o}^{a}\right) \tag{33}
\end{equation*}
$$

where u_{o}^{a} are the coordinates of \boldsymbol{r}_{o}.
(a) What is formula $\delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)$ for cylindrical coordinates?
(b) A uniform ring of charge Q and radius a sits at height z_{o} above the $x y$ plane, and the plane of the ring is parallel to the $x y$ plane. Express the charge density $\rho(\boldsymbol{r})$ (charge per volume) in spherical coordinates using delta-functions. Check that the volume integral of $\rho(\boldsymbol{r})$ gives the total Q.

Problem 6. Fourier Transforms of the Coulomb Potential

The fourier transfrom takes a function in coordinate space and represents in momentum space 1

$$
\begin{equation*}
F(k)=\int_{-\infty}^{\infty} d x\left[e^{-i k x}\right] f(x) \tag{34}
\end{equation*}
$$

The inverse transformation repesents a function as a sum of plane waves

$$
\begin{equation*}
F(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi}\left[e^{i k x}\right] F(k) \tag{35}
\end{equation*}
$$

The Fourier transform generalizes the concept of a fourier series to non-periodic, but square integrable functions - i.e. $\int d x|f(x)|^{2}$ should converge.

The Fourier transform of a 3D function $\boldsymbol{r}=(x, y, z)$ is:

$$
\begin{align*}
& F(\boldsymbol{k})=\int d^{3} \boldsymbol{r}\left[e^{-i \boldsymbol{k} \cdot \boldsymbol{r}}\right] F(\boldsymbol{r}) \tag{36}\\
& F(\boldsymbol{r})=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}}\left[e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\right] F(\boldsymbol{k}) \tag{37}
\end{align*}
$$

To do this problem you will need to know (as dicussed in class) that the integral of a pure phase $e^{i k x}$ is proportional to a delta-fcn. In $3 D$ we have

$$
\begin{align*}
\delta^{3}(\boldsymbol{r}) & =\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \tag{38}\\
(2 \pi)^{3} \delta^{3}(\boldsymbol{k}) & =\int d^{3} \boldsymbol{r} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}} \tag{39}
\end{align*}
$$

I find it useful to abbreviate these integrals (try it!)

$$
\begin{equation*}
\int_{\boldsymbol{k}} \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} \quad \int_{\boldsymbol{r}} \equiv \int d^{3} \boldsymbol{r} \tag{40}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\int_{\boldsymbol{k}} \int_{\boldsymbol{r}} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}}=1 \tag{41}
\end{equation*}
$$

(a) Use tensors notation to show that the Fourier transform of $\nabla F(\boldsymbol{r})$ is

$$
\begin{equation*}
i \boldsymbol{k} F(\boldsymbol{k}), \tag{42}
\end{equation*}
$$

and that the Fourier transform of the curl of a vector vector field $\boldsymbol{F}(\boldsymbol{r})$ is $\nabla \times \boldsymbol{F}(\boldsymbol{r})$ is

$$
\begin{equation*}
i \boldsymbol{k} \times \boldsymbol{F}(\boldsymbol{k}) \tag{43}
\end{equation*}
$$

(b) The genral rule is to replace $\nabla \rightarrow i \boldsymbol{k}$. What is the Fourier transform of $\nabla^{2} F(\boldsymbol{r})$

[^0](c) Prove the Convolution Theorem, i.e. the Fourier Transform of a product is a convolution
\[

$$
\begin{equation*}
\int d^{3} \boldsymbol{r} e^{-i \Delta \boldsymbol{k} \cdot \boldsymbol{r}}|F(\boldsymbol{r})|^{2}=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} F(\boldsymbol{k}) F^{*}(\boldsymbol{k}-\Delta \boldsymbol{k}) \tag{44}
\end{equation*}
$$

\]

making liberal use of the completeness integrals

$$
\begin{equation*}
\int d^{3} \boldsymbol{r} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}}=(2 \pi)^{3} \delta^{3}(\boldsymbol{k}) \tag{45}
\end{equation*}
$$

Remark: Setting $\Delta \boldsymbol{k}=0$ we recover Parseval's Theorem

$$
\begin{equation*}
\int d^{3} r|F(\boldsymbol{r})|^{2}=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}}|F(\boldsymbol{k})|^{2} \tag{46}
\end{equation*}
$$

Remark: This is often used in reverse, the fourier transform of a convolution is a product of the fourier transforms

$$
\begin{equation*}
\text { F.T. of } \int d^{3} \boldsymbol{r}_{o} F\left(\boldsymbol{r}_{o}\right) G\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)=F(\boldsymbol{k}) G(\boldsymbol{k}) \tag{47}
\end{equation*}
$$

(d) The Fourier transform of the Coulomb potential is difficult (try it and find out why!). This is because $1 /(4 \pi r)$ is not in the space of square integrable functions (Why?). Thus, we will consider the Fourier transform of $1 /(4 \pi r)$ to be the limit as $m \rightarrow 0$ of the Fourier transform of a screened Coulomb potential known as the Yukawa potential

$$
\begin{equation*}
\Phi(\boldsymbol{x})=\frac{e^{-m|\boldsymbol{r}|}}{4 \pi|\boldsymbol{r}|} \tag{48}
\end{equation*}
$$

The Yukawa potential is square integrable. Show that the Fourier transform of the Yukawa potential is

$$
\begin{equation*}
\Phi(\boldsymbol{k})=\frac{1}{k^{2}+m^{2}} \tag{49}
\end{equation*}
$$

with $k=\sqrt{\boldsymbol{k}^{2}}$. Thus, we conclude with $m \rightarrow 0$ that

$$
\begin{equation*}
\int d^{3} \boldsymbol{x} e^{-i \boldsymbol{k} \cdot \boldsymbol{r}} \frac{1}{4 \pi r}=\frac{1}{k^{2}} \tag{50}
\end{equation*}
$$

Note that the inverse transform can be computed by direct integration

$$
\begin{equation*}
\frac{1}{4 \pi\left|\boldsymbol{r}-\boldsymbol{r}_{o}\right|}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \boldsymbol{k} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{o}\right)}}{k^{2}} \tag{51}
\end{equation*}
$$

(e) In electrostatics the electric field is the negative gradient of the potential, $\boldsymbol{E}=-\nabla \Phi$. From $\nabla \cdot \boldsymbol{E}=\rho$, we derive the Poisson equation $-\nabla^{2} \Phi=\rho$. For a unit charge at the origin, the coulomb potential, $1 /(4 \pi r)$, satisfies

$$
\begin{equation*}
-\nabla^{2} \Phi=\delta^{3}(\boldsymbol{r}) \tag{52}
\end{equation*}
$$

Deduce Eq. (50) by fourier transforming this equation.

[^0]: ${ }^{1}$ The notation of putting $e^{i k x}$ in square brackets is not standard, but I have used it in the notes to highlight the similarity between this expansion and other eigenfunction expansions.

