
Problem 1. Kinematics of the Lambda decays

The lambda particle (Λ) is a neutral baryon of mass M = 1115 MeV that decays with
a lifetime of τ = 2.9 × 10−10 s into a nucleon of mass m1 = 939 MeV and a π-meson of
mass m2 = 140 MeV. It was first observed by its charged decay mode Λ → p + π− in
cloud chambers. In the clould chamber (and in detectors today) the charge tracks seem
to appear out of nowhere from a single point (since the lambda is neutral) and have the
appearance of the letter vee. Hence this decay is known as a vee decay. The particles’
identities and momenta can be inferred from their ranges and curvature in the magnetic
field of the chamber. (In this problem M , m1, m2 etc are short for Mc2,m1c

2,m2c
2 etc., and

p1 and p2 are short for cp1 and cp2 ) A picture of the vee decay is shown below

(a) Using conservation of momentum and energy and the invariance of scalar products of
four vectors show that, if the opening angle θ between the two tracks is measured, the
mass of the decaying particle can be found from the formula

M2 = m2
1 +m2

2 + 2 (E1E2 − p1p2 cos θ)

(b) A lambda particle is created with total energy of 10 GeV in and moves along the x-axis.
How far on the average will it travel in the chamber before decaying? (Answer: 0.78 m)
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(c) Show that the momentum of the pion (or the proton) in the rest frame of the Lambda
is

p1 = p2 =

√
(M2 −m2

1 −m2
2)2 − 4m2

1m
2
2

4M2
(1)

and evaluate the velocity/c of the pion vπ/c numerically. (Answer: 0.573)

Use this to determine if a pion emitted in the negative x direction in the frame of the
decaying 10 GeV lambda will move forward (positive-x) or backwards (negative-x) in
the lab frame.

(d) What range of opening angles will occur for a 10 GeV lambda if the decay is more or
less isotropic in the lambda’s rest frame? (Hint: write a program in any language (e.g.
mathematica) to plot θ vs. (pz in the rest frame). Or you can muck about with algebra
and learn less. I find θ = 0 . . . 5.03o )

2



Problem 2. Proper acceleration

A particle of mass m, starting at rest at time t = 0 and x = 0 in the lab frame, experiences
a constant acceleration, a, in the x-direction in its own rest frame.

(a) The acceleration four vector

Aµ ≡ d2xµ

dτ 2
(2)

is specified by the problem statement. What are the four components of the acceler-
ation four vector in the rest frame of the particle and in the lab frame. What is the
acceleration, d2x/dt2, in the lab frame.

(b) Show that the position of the particle as a function of time can be parameterized by a
real number p

x =
c2

a
[cosh(p)− 1] (3)

where p is related to the time t through the equation:

c t =
c2

a
sinh(p) (4)

(c) Show that the parameter p is proportional proper time, p = a
c
τ .

(d) The rapidity of a particle, Y , is defined by its velocity

v

c
≡ tanh(Y ) (5)

where v = dx/dt. Show that the four velocity uµ = dxµ/dτ is related to the rapidity
through the hyperbolic relations.

(u0/c, u1/c) = (cosh(Y ), sinh(Y )) (6)

(e) Show that Y = aτ/c

Remark: We see that the rapidity of the particle increases linearly with proper time
during proper acceleration.

(f) If the particle has a constant decay rate in its own frame of Γ, show that the probability
that the particle survives at late time t is approximately(

2at

c

)−Γc/a
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Problem 3. The stress tensor from the equations of motion

In class we wrote down energy and momentum conservation in the form

∂Θµν
mech

∂xµ
= F ν

ρ

Jρ

c
(7)

Where the ν = 0 component of this equation reflects the work done by the E&M field on
the mechanical constituents, and the spatial components (ν = 1, 2, 3) of this equation reflect
the force by the E&M field on the mechanical constituents.

(a) Verify that

F ν
ρ

Jρ

c
=

{
J/c ·E ν = 0

ρEj + (J/c×B)j ν = j
(8)

(b) (Optional) Working within the limitations of magnetostatics where

∇×B =
J

c
∇ ·B = 0 (9)

show that the magnetic force can be written as the divergence of the magnetic stress
tensor, T ijB = −BiBj + 1

2
δijB2:

(
J

c
×B)j = −∂iT ijB (10)

(c) Consider a solenoid of infinite length carrying current I with n turns per length, what
is the force per area on the sides of the solenoid.

(d) Using the equations of motion in covariant form

− ∂µF µρ =
Jρ

c
(11)

and the Bianchi Identity
∂µFσρ + ∂σFρµ + ∂ρFµσ = 0 (12)

show that

F ν
ρ

Jρ

c
= − ∂

∂xµ
Θµν

em (13)

where
Θµν

em = F µρF ν
ρ + gµν

(
−1

4
FαβF

αβ
)

(14)

Hint: use the fact that F µρ is anti-symmetric under interchange of µ and ρ.

(e) (Optional) Verify by direct substitution, using F ij = εijkBk, that if there is no electric
field that

Θij = T ijB . (15)
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Problem 4. An alternative lagrangian for the point particle:

The action of the point particle is taken to be

So + Sint =
1

2

∫
dλ

[
1

η(λ)
mc ẊµẊµ −mcη(λ)

]
+
e

c

∫
dλ ẊµAµ(X(λ)) . (16)

Here Xµ(λ) is the path of the particle, which is also known as the world-line. Xµ(λ) is
parameterized by the real parameter λ, and Ẋµ = dXµ/dλ is the derivative of the path.

• η(λ) is known as the tetrad. The tetrad is an additional world line (metric) field that
each particle carries around, in much the same way that the particle carries around its
spin. The tetrad measures how an infinitessimal change in the world-line parameter
dλ, is related to an infinitessimal change in the physical propper time, dτ

c dτ = η(λ)dλ (17)

Heuristically we have:

c dτ = η(λ)dλ c dτ =
(cdτ)2

(cdτ)
=
−(dλ)2 ẊµẊµ

η(λ)dλ
(18)

Thus the action So is recognizable as the action of point particle that we had in class:

So =
1

2

∫
dλ

η(λ)
mc ẊµẊµ︸ ︷︷ ︸
−mc2dτ

+−mcη(λ)dλ︸ ︷︷ ︸
−mc2dτ

(19)

=−
∫
mc2dτ (20)

• Under reparametrization of the path λ(λ̄), the tetrad changes, so that physical propper
time remains invariant:

η̄(λ̄) ≡ η(λ)
dλ

dλ̄
. (21)

i.e.
cdτ = η(λ)dλ = η̄(λ̄)dλ̄ = cdτ (22)

• The equations of motion for the point particle and its tetrad (which is a dynamical
field) are found by varying the action,

Xµ(λ)→Xµ(λ) + δXµ(λ) (23)

η(λ)→η(λ) + δη(λ) (24)

This problem will study this Lagrangian.

(a) Show that the action
So + Sint (25)

is reparametrization invariant, i.e. that the value of the action integral with dλ, X(λ),
η(λ) equals the action integral with dλ̄, X(λ̄), η̄(λ̄).
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(b) By varying the action show that we obtain the correct equations of motion:

m
d2Xµ

dτ 2
=
e

c
F µ
ν

dXν

dτ
(26)

and the appropriate constraint:

η(λ) =

√
−ẊµẊµ ≡ c

dτ

dλ
(27)
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Problem 5. Fields from moving particle

The electric and magnetic fields of a particle of charge q moving in a straight line with speed
v = βc were given in class. Choose the axes so that the charge moves along the z−axis in the
positive direction, passing the origin at t = 0. Let the spatial coordinates of the observation
point be (x, y, z) and define a transverse vector (or impact parameter) b⊥ = (x, y), with
components x and y. Consider the fields and the source in the limit β → 1

(a) First (keeping β finite) find the vector potential Aµ associated with the moving particle
using a Lorentz transformation. Determine the field strengh tensor F µν by differenti-
ating Aµ, and verify that you get the same answer as we got in class.

(b) As the charge q passes by a charge e at impact parameter b, show that the accumulated
transverse momentum transfer (transverse impulse) to the charge e during the passage
of q is

∆p⊥ =
eq

2π

b⊥
b2
⊥c

(28)

(c) Show that the time integral of the absolute value of the longitudinal force to a charge
e at rest at an impact parameter b⊥ is

eq

2πγb⊥ c
(29)

and hence approaches zero as β → 1.

(d) Show that the fields of charge q can be written for β → 1 as

E =
q

2π

b⊥
b2
⊥
δ(ct− z) , B =

q

2π

v̂/c× b⊥
b2
⊥

δ(ct− z) . (30)

(e) Show by explicit substitution into the Maxwell equations that these fields are consistent
with the 4−vector source density

Jα = qvαδ2(b⊥)δ(ct− z) (31)

where vα = (c, v̂) .
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Problem 6. (Optional, but good) Kinematics of a Relativistic
Rod

Consider a rod of rest length Do. According to an inertial frame K ′ the rod is aligned along
the x′-axis, and moves moves with velocity u′ along the y′ axis. The frame K ′ is moving to the
right with velocity v relative to K in the x direction. The coordinate origins of the K and K ′

systems are chose so that the midpoint of the rod crosses the spatial origin at time t = t′ = 0,
i.e. that space-time location of the rod center intersects t = t′ = x = x′ = y = y′ = 0.

(a) Find the space-time trajectory of the endpoints of the rod in frame K.

(b) At t = 0 in frame K, Show that the angle of the rod to the x-axis is

φ = −atan(γvvu
′/c2) (32)

where γv = 1/
√

1− (v/c)2

(c) Show that the length of the rod in frame K is√(
Do

γ

)2

+

(
vu′

c2

)2

D2
o
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