
Problem 1. Retarded time derivatives

(a) Compute ∂T/∂t and ∂T/∂ri. What is

∂T

∂t
+ cni

∂T

∂ri
. (1)

Explain physically.
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Problem 2. Lienard-Wiechert for constant velocity

For a particle moving with constant velocity v along the x−axis you showed previously using
Lorentz transformation that

Ax(t, x,x⊥ = b) =
e

4π

γβ√
b2 + γ2(x− vt)2

(2)

so that at the observation point (t, r) = (t, x, y, z) = (t, 0, b, 0) the potenial is

Ax(t, x, y = b) =
e

4π

γβ√
b2 + (γvt)2

(3)

Start by noting the definitions

T ≡ t− R

c
R = |r − r∗(T )| R ≡ Rn ≡ r − r∗(T ) n ≡ R

R
(4)

and drawing a picture for yourself.

(a) Show that the Lienard Wiechert result,

A(t, r) =
e

4π

[
v/c

R(1− n · β)

]
ret

. (5)

gives the same result as Eq. (3).

(b) Show that the Lienard-Wiechert potential, Eq. (5), and analogous equation for ϕ can
be written covariantly

Aµ(X) = − e

4π

[
Uµ

U ·∆X

]
ret

, (6)

where ∆Xµ is the difference in the space-time coordinate four vectors of the emission
and observation points, and Uµ is the four velocity of the particle. What is ∆X ·∆X ≡
∆Xµ∆Xµ?
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Problem 3. The Hamiltonian of a Relativistic Particle

In class we discussed the point particle Lagrangian

L = −mc2
√

1− ẋ · ẋ/c2 − eϕ+
e

c
ẋ ·A . (7)

(a) Show that the canonical momentum is

p = pkin +
e

c
A , (8)

where the kinetic momentum is pkin = γmẋ.

(b) Show that the Hamiltonian is

H = c

√
(p− e

c
A)2 + (mc)2 + eϕ . (9)

It is the canonical momentum which appears in the Hamiltonian, but the kinetic mo-
mentum which appears in

dpkin
dt

= q(E +
v

c
×B) . (10)

(c) What is the Hamiltonian in the non-relativistic limit?
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Problem 4. (Optional) Variational derivatives for students

• Variational derivatives cause students great hardship. Its meaning is discussed in what
follows. We are considering an integral1 depending on a path x(t) starting at x1 and
ending at x2. For example

I[x] =

∫ t2,x2

t1,x1

dt L(x(t)) . (11)

Then we deform the path
x(t)→ x(t) + δx(t) (12)

where the endpoints are unchanged δx(t1) = δx(t2) = 0. Then the integral changes
and the result must be proportional to δx(t) for smal variations

δI[x] =

∫
dt

[
∂L(x(t))

∂x(t)

]
δx(t) (13)

We say that the thing in square bracekts (i.e. the thing sitting in front of
∫
dt δx(t))

is the variation derivative of the functional

δI[x]

δx(t)
= thing in front of

∫
dt δx(t) =

∂L(x(t))

∂x(t)
(14)

When working with variations, I prefer to work with the change in the integral (i.e.
Eq. (13)), which somehow means more to me than some mysterious new differentiation
symbol, and always works.

• However, as the formalism of variational derivatives is common, let us develop it.
Clearly

x(t) =

∫
dt x(t′) δ(t− t′) . (15)

Then following the steps leading to Eq. (13) and Eq. (14) we see that

δx(t)

δx(t′)
= δ(t− t′) . (16)

Then the normal rules of differentiation apply

δL(x(t′))

δx(t)
≡ ∂L(x(t′))

∂x(t′)

δx(t′)

δx(t)
=
∂L(x(t′))

∂x(t′)
δ(t′ − t) . (17)

In this way if

I[x] =

∫ t2,x2

t1,x1

dt′ L(x(t′)) , (18)

1Technically the integral is a functional of x(t), i.e. something which takes a function (x(t)) and spits out
a number.
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then we can differentiate under the integral

δI[x]

δx(t)
=

∫ t2,x2

t1,x1

dt′
δL(x(t′))

δx(t)
, (19)

=

∫ t2,x2

t1,x1

dt′
∂L(x(t′))

∂x(t)
δ(t′ − t) (20)

=
∂L(x(t))

∂x(t)
, (21)

as we got before

• Some people who do numerics like to work discretely where xi = x(ti), with ti = t1+i∆t
being discretely spaced points. Then the integral is an ordinary function of xi

I(x1, x2, x3 . . . ) =
∑
i

∆tL(xi) (22)

Then the variational derivative is just limit as ∆t goes to zero of

δI[x]

δx(ti)
=

1

∆t

∂I

∂xi
(23)

• We have discussed a function of t and the integral which is a functional of x(t). When
working with fields which are a function of space-time A(x) (here x = (ct,x)), the
integral is functional of A(x)

I[A] =

∫
d4xL(A(x)) . (24)

Then the variation of the integral is found by changing the function A(x) to a new
function

A(x)→ A(x) + δA(x) . (25)

The integral then changes to I → I + δI

δI =

∫
d4x

[
∂L(A(x))

∂A(x)

]
δA(x) (26)

The thing in square brackets in front of
∫
d4x δA(x) is defined as the variational deriva-

tive

δI[A]

δA(x)
=thing in front of

∫
d4x δA(x) (27)

=
∂L(A(x))

∂A(x)
in this simple case (28)
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• In the same sense as before

A(x) =

∫
d4yA(y)δ4(x− y) . (29)

Thus
δA(x)

δA(y)
= δ4(x− y) , (30)

and
δL(A(y))

δA(x)
≡ ∂L(A(y))

∂A(y)
δ4(y − x) . (31)

I have always found this slightly confusing and a bit too formal, and prefer the more
understandable change in integral, Eq. (26).

We defined the current as the thing sitting in front of
∫
d4x δAµ(x) under a variation of

the interaction lagrangian between the charge particles (or medium) and the fields, i.e.

δSint ≡
∫
d4x

Jµ(x)

c
δAµ(x) (32)

or
Jµ(x)

c
=
δSint[A]

δAµ(x)
(33)

We also said the interation between a point particle and the field is

Sint−pp =
e

c

∫
dτ
dxµo (t)

dτ
Aµ(xo(τ)) (34)

where xo(τ) is the trajectory of the particle.

(a) Show that for a point particle moving with trajectory xµo (τ), the current is Jµ(x) is

Jµpp(x) =
e

c

∫
dτ
dxµo (τ)

dτ
δ4(x− xo(τ)) (35)

and how this reduces to
Jµ(x) = evµδ3(x− xo(t)) . (36)

Note that vmu = (c,v) is not a four vector, although the current is not a four vector.

(b) (Optional) Show that
vµδ3(x− xo(t)) . (37)

is a four vector

(c) Consider electrostatics, where E(t,x) = −∇ϕ(x) and B = 0. Starting from the action
of electrodynamics

S = So + Sint =

∫
d4x
−1

4
FµνF

µν +
Jµ

c
Aµ , (38)
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show that the action for the the electrostatic potential can be taken to be

S[ϕ(x)] =

∫
d3x

1

2
(∇ϕ(x))2 − ρ(x)ϕ(x) . (39)

And show that a variation of the action gives the expected equation of motion for the
electostatic potential.

(d) (Optional) Similarly, consider magnetostatics where B(t,x) = ∇×A(x) and E = 0.
Determine the action for the vector potential A(x) and vary this action to determine
the equations of magnetostatics.
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