Problem 1. Retarded time derivatives

(a) Compute $\partial T / \partial t$ and $\partial T / \partial \boldsymbol{r}^{i}$. What is

$$
\begin{equation*}
\frac{\partial T}{\partial t}+c \boldsymbol{n}^{i} \frac{\partial T}{\partial \boldsymbol{r}^{i}} . \tag{1}
\end{equation*}
$$

Explain physically.

Problem 2. Lienard-Wiechert for constant velocity

For a particle moving with constant velocity v along the x-axis you showed previously using Lorentz transformation that

$$
\begin{equation*}
A^{x}\left(t, x, \boldsymbol{x}_{\perp}=\boldsymbol{b}\right)=\frac{e}{4 \pi} \frac{\gamma \beta}{\sqrt{b^{2}+\gamma^{2}(x-v t)^{2}}} \tag{2}
\end{equation*}
$$

so that at the observation point $(t, \boldsymbol{r})=(t, x, y, z)=(t, 0, b, 0)$ the potenial is

$$
\begin{equation*}
A^{x}(t, x, y=b)=\frac{e}{4 \pi} \frac{\gamma \beta}{\sqrt{b^{2}+(\gamma v t)^{2}}} \tag{3}
\end{equation*}
$$

Start by noting the definitions

$$
\begin{equation*}
T \equiv t-\frac{R}{c} \quad R=\left|\boldsymbol{r}-\boldsymbol{r}_{*}(T)\right| \quad \boldsymbol{R} \equiv R \boldsymbol{n} \equiv \boldsymbol{r}-\boldsymbol{r}_{*}(T) \quad \boldsymbol{n} \equiv \frac{\boldsymbol{R}}{R} \tag{4}
\end{equation*}
$$

and drawing a picture for yourself.
(a) Show that the Lienard Wiechert result,

$$
\begin{equation*}
\boldsymbol{A}(t, \boldsymbol{r})=\frac{e}{4 \pi}\left[\frac{\mathbf{v} / c}{R(1-\boldsymbol{n} \cdot \boldsymbol{\beta})}\right]_{\mathrm{ret}} \tag{5}
\end{equation*}
$$

gives the same result as Eq. (3).
(b) Show that the Lienard-Wiechert potential, Eq. (5), and analogous equation for φ can be written covariantly

$$
\begin{equation*}
A^{\mu}(X)=-\frac{e}{4 \pi}\left[\frac{U^{\mu}}{U \cdot \Delta X}\right]_{\mathrm{ret}} \tag{6}
\end{equation*}
$$

where ΔX^{μ} is the difference in the space-time coordinate four vectors of the emission and observation points, and U^{μ} is the four velocity of the particle. What is $\Delta X \cdot \Delta X \equiv$ $\Delta X^{\mu} \Delta X_{\mu}$?

Problem 3. The Hamiltonian of a Relativistic Particle

In class we discussed the point particle Lagrangian

$$
\begin{equation*}
L=-m c^{2} \sqrt{1-\dot{\boldsymbol{x}} \cdot \dot{\boldsymbol{x}} / c^{2}}-e \varphi+\frac{e}{c} \dot{\boldsymbol{x}} \cdot \boldsymbol{A} . \tag{7}
\end{equation*}
$$

(a) Show that the canonical momentum is

$$
\begin{equation*}
\boldsymbol{p}=\boldsymbol{p}_{\text {kin }}+\frac{e}{c} \boldsymbol{A} \tag{8}
\end{equation*}
$$

where the kinetic momentum is $\boldsymbol{p}_{\text {kin }}=\gamma m \dot{\boldsymbol{x}}$.
(b) Show that the Hamiltonian is

$$
\begin{equation*}
H=c \sqrt{\left(\boldsymbol{p}-\frac{e}{c} \boldsymbol{A}\right)^{2}+(m c)^{2}}+e \varphi . \tag{9}
\end{equation*}
$$

It is the canonical momentum which appears in the Hamiltonian, but the kinetic momentum which appears in

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{\mathrm{kin}}}{d t}=q\left(\boldsymbol{E}+\frac{\mathbf{v}}{c} \times \boldsymbol{B}\right) . \tag{10}
\end{equation*}
$$

(c) What is the Hamiltonian in the non-relativistic limit?

Problem 4. (Optional) Variational derivatives for students

- Variational derivatives cause students great hardship. Its meaning is discussed in what follows. We are considering an integral ${ }^{1}$ depending on a path $x(t)$ starting at x_{1} and ending at x_{2}. For example

$$
\begin{equation*}
I[x]=\int_{t_{1}, x_{1}}^{t_{2}, x_{2}} d t L(x(t)) \tag{11}
\end{equation*}
$$

Then we deform the path

$$
\begin{equation*}
x(t) \rightarrow x(t)+\delta x(t) \tag{12}
\end{equation*}
$$

where the endpoints are unchanged $\delta x\left(t_{1}\right)=\delta x\left(t_{2}\right)=0$. Then the integral changes and the result must be proportional to $\delta x(t)$ for smal variations

$$
\begin{equation*}
\delta I[x]=\int d t\left[\frac{\partial L(x(t))}{\partial x(t)}\right] \delta x(t) \tag{13}
\end{equation*}
$$

We say that the thing in square bracekts (i.e. the thing sitting in front of $\int d t \delta x(t)$) is the variation derivative of the functional

$$
\begin{equation*}
\frac{\delta I[x]}{\delta x(t)}=\text { thing in front of } \int d t \delta x(t)=\frac{\partial L(x(t))}{\partial x(t)} \tag{14}
\end{equation*}
$$

When working with variations, I prefer to work with the change in the integral (i.e. Eq. (13)), which somehow means more to me than some mysterious new differentiation symbol, and always works.

- However, as the formalism of variational derivatives is common, let us develop it. Clearly

$$
\begin{equation*}
x(t)=\int d t x\left(t^{\prime}\right) \delta\left(t-t^{\prime}\right) . \tag{15}
\end{equation*}
$$

Then following the steps leading to Eq. (13) and Eq. (14) we see that

$$
\begin{equation*}
\frac{\delta x(t)}{\delta x\left(t^{\prime}\right)}=\delta\left(t-t^{\prime}\right) \tag{16}
\end{equation*}
$$

Then the normal rules of differentiation apply

$$
\begin{equation*}
\frac{\delta L\left(x\left(t^{\prime}\right)\right)}{\delta x(t)} \equiv \frac{\partial L\left(x\left(t^{\prime}\right)\right)}{\partial x\left(t^{\prime}\right)} \frac{\delta x\left(t^{\prime}\right)}{\delta x(t)}=\frac{\partial L\left(x\left(t^{\prime}\right)\right)}{\partial x\left(t^{\prime}\right)} \delta\left(t^{\prime}-t\right) \tag{17}
\end{equation*}
$$

In this way if

$$
\begin{equation*}
I[x]=\int_{t_{1}, x_{1}}^{t_{2}, x_{2}} d t^{\prime} L\left(x\left(t^{\prime}\right)\right) \tag{18}
\end{equation*}
$$

[^0]then we can differentiate under the integral
\[

$$
\begin{align*}
\frac{\delta I[x]}{\delta x(t)} & =\int_{t_{1}, x_{1}}^{t_{2}, x_{2}} d t^{\prime} \frac{\delta L\left(x\left(t^{\prime}\right)\right)}{\delta x(t)}, \tag{19}\\
& =\int_{t_{1}, x_{1}}^{t_{2}, x_{2}} d t^{\prime} \frac{\partial L\left(x\left(t^{\prime}\right)\right)}{\partial x(t)} \delta\left(t^{\prime}-t\right) \tag{20}\\
& =\frac{\partial L(x(t))}{\partial x(t)}, \tag{21}
\end{align*}
$$
\]

as we got before

- Some people who do numerics like to work discretely where $x_{i}=x\left(t_{i}\right)$, with $t_{i}=t_{1}+i \Delta t$ being discretely spaced points. Then the integral is an ordinary function of x_{i}

$$
\begin{equation*}
I\left(x_{1}, x_{2}, x_{3} \ldots\right)=\sum_{i} \Delta t L\left(x_{i}\right) \tag{22}
\end{equation*}
$$

Then the variational derivative is just limit as Δt goes to zero of

$$
\begin{equation*}
\frac{\delta I[x]}{\delta x\left(t_{i}\right)}=\frac{1}{\Delta t} \frac{\partial I}{\partial x_{i}} \tag{23}
\end{equation*}
$$

- We have discussed a function of t and the integral which is a functional of $x(t)$. When working with fields which are a function of space-time $A(x)$ (here $x=(c t, \boldsymbol{x})$), the integral is functional of $A(x)$

$$
\begin{equation*}
I[A]=\int d^{4} x \mathcal{L}(A(x)) \tag{24}
\end{equation*}
$$

Then the variation of the integral is found by changing the function $A(x)$ to a new function

$$
\begin{equation*}
A(x) \rightarrow A(x)+\delta A(x) \tag{25}
\end{equation*}
$$

The integral then changes to $I \rightarrow I+\delta I$

$$
\begin{equation*}
\delta I=\int d^{4} x\left[\frac{\partial \mathcal{L}(A(x))}{\partial A(x)}\right] \delta A(x) \tag{26}
\end{equation*}
$$

The thing in square brackets in front of $\int d^{4} x \delta A(x)$ is defined as the variational derivative

$$
\begin{align*}
\frac{\delta I[A]}{\delta A(x)} & =\text { thing in front of } \int d^{4} x \delta A(x) \tag{27}\\
& =\frac{\partial \mathcal{L}(A(x))}{\partial A(x)} \text { in this simple case } \tag{28}
\end{align*}
$$

- In the same sense as before

$$
\begin{equation*}
A(x)=\int d^{4} y A(y) \delta^{4}(x-y) \tag{29}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\delta A(x)}{\delta A(y)}=\delta^{4}(x-y) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\delta \mathcal{L}(A(y))}{\delta A(x)} \equiv \frac{\partial \mathcal{L}(A(y))}{\partial A(y)} \delta^{4}(y-x) . \tag{31}
\end{equation*}
$$

I have always found this slightly confusing and a bit too formal, and prefer the more understandable change in integral, Eq. (26).

We defined the current as the thing sitting in front of $\int d^{4} x \delta A_{\mu}(x)$ under a variation of the interaction lagrangian between the charge particles (or medium) and the fields, i.e.

$$
\begin{equation*}
\delta S_{\mathrm{int}} \equiv \int d^{4} x \frac{J^{\mu}(x)}{c} \delta A_{\mu}(x) \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{J^{\mu}(x)}{c}=\frac{\delta S_{\mathrm{int}}[A]}{\delta A_{\mu}(x)} \tag{33}
\end{equation*}
$$

We also said the interation between a point particle and the field is

$$
\begin{equation*}
S_{\mathrm{int}-\mathrm{pp}}=\frac{e}{c} \int d \tau \frac{d x_{o}^{\mu}(t)}{d \tau} A_{\mu}\left(x_{o}(\tau)\right) \tag{34}
\end{equation*}
$$

where $x_{o}(\tau)$ is the trajectory of the particle.
(a) Show that for a point particle moving with trajectory $x_{o}^{\mu}(\tau)$, the current is $J^{\mu}(x)$ is

$$
\begin{equation*}
J_{\mathrm{pp}}^{\mu}(x)=\frac{e}{c} \int d \tau \frac{d x_{o}^{\mu}(\tau)}{d \tau} \delta^{4}\left(x-x_{o}(\tau)\right) \tag{35}
\end{equation*}
$$

and how this reduces to

$$
\begin{equation*}
J^{\mu}(x)=e v^{\mu} \delta^{3}\left(\boldsymbol{x}-\boldsymbol{x}_{o}(t)\right) \tag{36}
\end{equation*}
$$

Note that $v^{m u}=(c, \mathbf{v})$ is not a four vector, although the current is not a four vector.
(b) (Optional) Show that

$$
\begin{equation*}
v^{\mu} \delta^{3}\left(\boldsymbol{x}-\boldsymbol{x}_{o}(t)\right) \tag{37}
\end{equation*}
$$

is a four vector
(c) Consider electrostatics, where $\boldsymbol{E}(t, \boldsymbol{x})=-\nabla \varphi(\boldsymbol{x})$ and $\boldsymbol{B}=0$. Starting from the action of electrodynamics

$$
\begin{equation*}
S=S_{o}+S_{\mathrm{int}}=\int d^{4} x \frac{-1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{J^{\mu}}{c} A_{\mu} \tag{38}
\end{equation*}
$$

show that the action for the the electrostatic potential can be taken to be

$$
\begin{equation*}
S[\varphi(\boldsymbol{x})]=\int d^{3} \boldsymbol{x} \frac{1}{2}(\nabla \varphi(\boldsymbol{x}))^{2}-\rho(\boldsymbol{x}) \varphi(\boldsymbol{x}) . \tag{39}
\end{equation*}
$$

And show that a variation of the action gives the expected equation of motion for the electostatic potential.
(d) (Optional) Similarly, consider magnetostatics where $\boldsymbol{B}(t, \boldsymbol{x})=\nabla \times \boldsymbol{A}(\boldsymbol{x})$ and $\boldsymbol{E}=0$. Determine the action for the vector potential $\boldsymbol{A}(\boldsymbol{x})$ and vary this action to determine the equations of magnetostatics.

[^0]: ${ }^{1}$ Technically the integral is a functional of $x(t)$, i.e. something which takes a function $(x(t))$ and spits out a number.

