
Problem 1. A cylinder in a magnetic field

A very long hollow cylinder of inner radius a and outer radius b of permeability µ is placed
in an initially uniform magnetic field Bo at right angles to the field.

(a) For a constant field Bo in the x direction show that Az = Boy is the vector potential.
This should give you an idea of a convenient set of coordinates to use.

Remark: See Wikipedia for a list of the vector Laplacian in all coordinates. Most often
the vector Laplacian is used if the current is azimuthal and solutions may be looked
for with Aφ 6= 0 and Ar = Aθ = 0 (or Aρ = Az = 0 in cylindrical coordinates). This
could be used for example in Problem 3. Similarly if the current runs up and down,
with Az 6= 0 and Aρ = Aφ = 0, so that B = (Bx(x, y, z), By(x, y, z), 0) is independent
of z, then the vector Laplacian in cylindrical coordinates −∇2Az is a good way to go.

(b) Show that the magnetic field in the cylinder is constant ρ < a and determine its
magnitude.

(c) Sketch |B|/|Bo| at the center of the as function of µ for a2/b2 = 0.9, 0.5, 0.1 for µ > 1.
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Problem 2. Helmholtz coils

Consider a compact circular coil of radius a carrying current I, which lies in the x− y plane
with its center at the origin.

(a) By elementary means compute the magnetic field along the z axis.

(b) Show by direct analysis of the Maxwell equations ∇ · B = 0 and ∇ × B = 0 that
slightly off axis near z = 0 the magnetic field takes the form

Bz ' σ0 + σ2
(
z2 − 1

2
ρ2
)
, Bρ ' −σ2zρ , (1)

where σ0 = (Bo
z) and σ2 = 1

2

(
∂2Bo

z

∂z2

)
are the field and its z derivatives evaluated at the

origin. For later use give σ0 and σ2 explictly in terms of the current and the radius of
the loop.

Remark: Upon solving this problem, it should be clear that this method of solution
does not rely on being close to z = 0. We just chose z = 0 for definiteness.

(c) Now consider a second identical coil (co-axial with the first), having the same magni-
tude and direction of the current, at a height b above the first coil, where a is the radii
of the rings. With the coordinate origin relocated at the point midway between the
two centers of the coils, determine the magnetic field on the z-axis near the origin as
an expansion in powers of z to z4. Use mathematica if you like. You should find that
the coefficient of z2 vanishes when b = a

Remark For b = a the coils are known as Helmholtz coils. For this choice of b the z2

terms in part (c) are absent. (Also if the off-axis fields are computed along the lines
of part (b), they also vanish.) The field near the origin is then constant to 0.1% for
z < 0.17 a.
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Problem 3. The field from a ring current.

Consider conducting ring of current radius a lying in the x− y plane, carrying current I in
the counter clockwise direction, I = Iφ̂.

(a) Starting from the general (coulomb gauge) expression

A(r) =

∫
d3ro

j(ro)/c

4π|r − ro|
(2)

and the expansion of 1/(4π|r − ro|) in spherical coordinates, show that the expansion
of Aφ in the x, y plane inside the ring is

Aφ(ρ)|z=0 =
I

2c

∞∑
`=1

(P 1
` (0))2

`(`+ 1)

(ρ
a

)`
(3)

where ρ =
√
x2 + y2 and P 1

` is the associated Legendre polynomial. (Check out
wikipedia entry on spherical harmonics)

(b) Compute Bz(ρ) in the x, y plane.

(c) Show that close to the axis of the shell the magnetic field you computed in part (b) is
in agreement with the results of Eq. (1) when evaluated at z = 0, i.e. that for small ρ
part (b) yields Bz(ρ) ' σ0 − 1

2
σ2ρ

2 with the appropriate values of σ0 and σ2.

Remark: Using the generating function of Legendre polynomials derived in class

1√
1 + r2 − 2r cos θ

=
∞∑
`=0

r`P`(cos θ) (4)

and the defintion of P 1
` (cos θ) = − sin θ dP`(cos θ)

d(cos θ)
, we show that

∞∑
`=1

r`P 1
` (0) =

−r
(1 + r2)3/2

' −r +
3

2
r3 − 15

8
r5 + . . . (5)

establishing that

P 1
1 (0) = −1 P 1

3 (0) =
3

2
P 1
5 (0) = −15

8
P 1
` (0) = 0 for ` even. (6)

(d) Consider a magnetic dipole of magnetic moment m = −mẑ in the x−y plane oriented
oppositely to the field from the ring, show that when the dipole is inside the ring the
force on the dipole is

F = −ρ̂mBo

a

∞∑
`=3

(`− 1)

`
(P 1

` (0))2
(ρ
a

)`−2
(7)

where the negative indicates that the force is towards the center, and Bo = I/(2ca) is
the magnetic field in the center of the ring.

(e) Plot the force |F| / [mBo/a] as a function of ρ/a.
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Problem 4. A magnetized sphere and a circular hoop

A uniformly magnetized sphere of radius a centered at origin has a permanent total magnetic
moment m = m ẑ pointed along the z-axis (see below). A circular hoop of wire of radius b
lies in the xz plane and is also centered at the origin. The hoop circles the sphere as shown
below, and carries a small current Io (which does not appreciably change the magnetic field).
The direction of the current Io is indicated in the figure.

Io

z

x

y

(a) Determine the bound surface current on the surface of the sphere, and explain

(b) Determine the magnetic field B inside and outside the magnetized sphere by analogy
with the spinning charged sphere disucssed in class.

(c) Show that your solution satisfies the boundary conditions of magnetostatics on the
surface of the sphere.

(d) Compute the net-torque on the circular hoop. Indicate the direction and interpret.
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Problem 5. Tensor reduction – easy and somewhat useful

In the following questions x = a(sin θ cosφ, sin θ sinφ, cos θ) is a vector of length a. v is a
vector with magnitude less than one. f(x · v) ≡ 1/(1 + x · v) for definiteness.

Show the following:

(a) ∫
dΩxixj =

4πa2

3
δij (8)

(b) ∫
dΩxif(x · v) = v̂iI(v) (9)

where I(v) =
∫
dΩ a cos θ/(1 + v cos θ)

(c) This will come up later in the course∫
dΩxixjxkxl =

4πa4

15

(
δijδkl + δilδjk + δikδjl

)
(10)

(d) Show that ∫
dΩxixjf(x · v) = C1(v)δij + C2(v)

(
v̂iv̂j − 1

3
δij
)

(11)

where

C1(v) =
a2

3

∫
dΩf(v cos θ) (12)

C2(v) =a2
∫
dΩ

(
3

2
cos2 θ − 1

2

)
f(v cos θ) (13)

(14)
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