


7 The Maxwell Equations and Quasistatic Fields

7.1 The Maxwell Equations a Summary

The maxwell equations in linear media can be written down for the gauge potentials. You should feel
comfortable deriving all of these results directly from the Maxwell equations:

(a) The fields are

B =∇×A (7.1)

E =− 1

c
∂tA−∇Φ (7.2)

(b) The equations of motion for the gauge potentials are in any gauge

−�Φ− 1

c
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(
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c
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=ρ (7.3)
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(7.4)

where the d’Alembertian is

� = − 1

c2
∂2

∂t2
+∇2 (7.5)

Note that these equations for Φ and A can not be solved without specifying a gauge constraint, i.e.
given current conservation:

∂tρ+∇ · j = 0 (7.6)

There are actually only three equations, but four unknowns.

(c) If the coulomb gauge is specified
∇ ·A = 0 (7.7)

the equations read:

−∇2Φ =ρ (7.8)

−�A =
j

c
+

1

c
∂t(−∇Φ) (7.9)

(d) If the covariant gauge is specified
1

c
∂tΦ +∇ ·A = 0 (7.10)

then the equations read

−�Φ =ρ (7.11)

−�A =
j

c
(7.12)
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8 Induction and Quasi-Static Fields

8.1 Induction and the energy in static Magnetic fields

(a) The Faraday law of induction says that changing magnetic flux induces an electric field

∇×E = −1

c
∂tB (8.1)

In integral form ∮
E · d` = −1

c
∂tΦB ΦB =

∫
area

B · da =

∮
A · d` (8.2)

(b) Faraday’s Law is suppressed by 1/c2 relative to the coulomb law

(c) Faraday’s law can be used to compute the energy stored in a magneto static field. As the currents are
increased and the magnetic field is changed, the increase in energy stored in the magnetic fields and
associated magnetization is

δU =

∫
V

H · δB dV (8.3)

For linear material B = µH

U =
1

2

∫
H ·B d3x (8.4)

=
1

2µ

∫
B ·B d3x (8.5)

This can also be expressed in terms of A:

δU =

∫
V

j

c
· δA (8.6)

and for linear material:

U =
1

2

∫
V

j

c
·A (8.7)

The factor 1/2 arises because we are double counting the integral over the current in much the same
way that a factor of 1/2 appears in U = 1

2

∫
V
ρΦ

(d) Using the coulomb gauge result, for vector potential we show that the energy stored in a magnetic field
is

U =
µ

2

∫
d3x d3xo

j(r)/c · j(ro)/c

4π|r − ro|
(8.8)

(e) For a set of current loops Ia = I1, I2, . . ., we have (j/c) d3x = (I/c) d`.
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28 CHAPTER 8. INDUCTION AND QUASI-STATIC FIELDS

i) The energy integral Eq. (8.8) can be written

U =
1

2

∑
a,b

IaMabIb (8.9)

Here Maa ≡ La is the self inductance, while Mab is the mutual inductance. This is the circuit
analog of Eq. (8.8).

ii) The magnetic flux through the a− th loop is

Φa
c

= MabIb (8.10)

Here the magnetic flux through a given loop is

Φa ≡
∫
a−loop

B · da =

∮
a−loop

d` ·A (8.11)

and the magnetic energy can also be written

U =
1

2

∑
a

Ia
c

Φa (8.12)

This is the circuit analog of Eq. (8.7).

iii) The change in the magnetic energy (for fixed geometry) is

δU =
∑
a

Ia
c
δΦa (8.13)

iv) The back emf in the a-th loop is (at fixed geometry) :

Ea = −1

c
∂tΦa = −Mab

dIb
dt

(8.14)

v) For a small change in flux δΦa and a small displacement of the loops δRa (at fixed currents), the
change in the magnetic energy

δU =

δWbatt︷ ︸︸ ︷
Ia
c
δΦa +δWmech (8.15)

where the first term is the work done by the battery (to keep the current constant inspite of the
back emf induced by the changing flux), andWmech = −Fa·δRa is the mechanical work done by the
external force moving the loops, and Fa is force on the a−th loop. UB =

∫
V
B2/(2µ) = 1

2IaMabIb
is a property of the initial and final magnetic fields and is independent of how these fields are
achieved. This combined with Eqs. 8.9,8.10 gives

Fa · δRa = +
1

2
Ia δMab Ib (8.16)
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8.2 Quasi-static fields

(a) We studied a prototypical problem of a charging a capacitor plates. The maxwell equations are cate-
gorized by an expansion in 1/c, i.e. that the speed of light is fast compared to L/T the characteristic
lengths L and times T . In this approximation the fields are determined instantaneously across space.
Organizing the maxwell equations

∇ ·E =ρ (8.17)

∇×B =
j

c
+

1

c
∂tE (8.18)

∇ ·B =0 (8.19)

∇×E =− 1

c
∂tB (8.20)

in powers of 1/c we have:

i) 0th order:

∇ ·E(0) =ρ ∇×B(0) =0 (8.21)

∇×E(0) =0 ∇ ·B(0) =0 (8.22)

ii) 1st order:

∇ ·E(1) =0 ∇×B(1) =
j

c
+

1

c
∂tE

(0) (8.23)

∇×E(1) =0 ∇ ·B(1) =0 (8.24)

iii) 2nd order:

∇ ·E(2) =0 ∇×B(2) =0 (8.25)

∇×E(2) =− 1

c
∂tB

(1) ∇ ·B(2) =0 (8.26)

iv) Third order . . .

∇ ·E(3) =0 ∇×B(3) = +
1

c
∂tE

(2) (8.27)

∇×E(3) =− 1

c
∂tB

(2) ∇ ·B(3) =0 (8.28)

Often time this goes beyond what is needed. Often at 3rd oder and beyond we will need to
consider radiation at this order . . ., since the fields do not (in general) decay faster than 1/r at
infinity.

(b) In the quasi-static approximation we find a series of the following form:

E =E(0) + E(2) + . . . (8.29)

B =B(1) + B(3) + . . . (8.30)

were E(2) is smaller than E(0) by a factor of (L/(cT ))2 . Similarly, B(3) is are typically smaller than
B(1) (the leading B) by a factor (L/(cT ))2. If the material is ferromagnetic then µ can enhance the
strength of B relative to the naive estimates.
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Quasi-static approximation with gauge-potentials

(a) We often solve for the gauge potentials Φ and A (instead of E and B) order by order in 1/c instead
of E and B (see below). For example to second order in the Coulomb gauge we have

i) 0th order:
−∇2Φ = ρ (actually all orders) (8.31)

ii) 1s order :

−∇2A =
j

c
+

1

c
∂t(−∇Φ) (8.32)

This is sufficient to determine the electric and magnetic field to second order

E = −1

c
∂tA−∇Φ (8.33)

The covariant gauge can be studied similarly:

(b) In the covariant gauge we have

i) 0th:
−∇2Φ(0) = ρ (8.34)

ii) 1st:

−∇2A =
j

c
(8.35)

Together with gauge constraint:
1

c
∂tΦ

(0) +∇ ·A = 0 (8.36)

iii) 2nd:

−∇2Φ(2) =− 1

c2
∂2Φ(0)

∂t2
(8.37)
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8.3 Quasi-static approximation in metals and skin depth

(a) For the metals we derived a (quasi-static) diffusion equation for B by taking the curl of Amperes law
and using Faraday’s law

∇2B =
σµ

c2
∂tB (8.38)

You should feel comfortable deriving this. This shows the magnetic field diffuses in metal, with diffusion
coefficient

D =
c2

µσ
. (8.39)

The diffusion coefficient has units (distance)2/time and is for copper, D ∼ 1 cm2

millisec

(b) Eq. (8.38) should be compared to the diffusion equation for a drop of dye in a cup of water:

D∇2n = ∂tn . (8.40)

A Gaussian drop of dye spreads out in time, and the mean squared width of the the drop increases in
time as :

(∆x)2 = 2D∆t (8.41)

(c) If the RHS of Eq. (8.38) (the induced current) is small compared to the LHS, then we can neglect
the induced currents and the magnetic field is unscreened by the induced currents. In this case, the
characteristic lengths L we are considering are shorter than the skin depth:

δ ≡

√
2c2

σµω
(8.42)

On length scales larger than δ the magnetic field is damped by induced currents:

L�δ magnetic field unscreened (8.43)

L�δ magnetic field screened (8.44)

At fixed L this can also be expressed in term of frequency, i.e. if ω is less than ωind ≡ c2/σL2 then the
magnetic field is not screened at length L, but if ω is greater than ωind ≡ c2/σL2, then the magnetic
field is screened at length L.
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