
1 Radiation from a relativistic electron

Consider a relativistic electron (of charge e) traveling with an initial speed of vo along the
z-axis. At time t = 0 it slows down to a stop over a time τ while moving along the z-axis

v(t) = vo

(
1− t

τ

)
, 0 ≤ t ≤ τ . (1)

Recall that the electric field in the far field radiated from a point charge following a trajectory
with position x(t), and velocity v(T ) = x′(t) is

Erad(t, r) =
e

4πc2

[
n× (n− β)× a
R (1− n · β)3

]
ret

, (2)

where all quantities in square brackets are evaluated at the retarded time, T (t, r) (which
you will define below). The other symbols are defined as n ≡ (r − x(T ))/|r − x(T )|,
R ≡ |r − x(T )|, and β = v/c.

(a) (3 points) Define the retarded time and compute the derivatives ∂T/∂t and ∂T/∂ri

(b) (3 points) The radiation field Erad is derived from the Lienard-Wiechert potentials

ϕ(t, r) =
e

4π

[
1

R(1− n · β)

]
ret

, (3)

A(t, r) =
e

4πc

[
v

R(1− n · β)

]
ret

. (4)

Using far field approximations, show that the Lorenz gauge condition is satisfied by
these potentials.

(c) (6 points) For the decelerating electron described above, compute:

(i) the energy radiated per solid angle per retarded time.

(ii) the energy radiated per solid angle per time.

Describe in what physical situations you would be interested in (i) and (ii) respectively.
Use no more than two sentences to describe each case.

(d) (4 points) Now consider a relativistic electron with initial energy of 1 GeV.

Examining your results of part (c), you should find that at t = 0 the radiation is initially
emitted (predominantly) at a characteristic angle. Give an order of magnitude estimate
for this angle. Explain your estimate by pointing to specific terms in the formula from
part (c).

(e) (4 points) Determine the total energy per solid angle emitted as the electron decelerates
to a stop.
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Solution

(a) The retarded time is the time that light was emitted at the source such that it arrives
at space-time observation point (t, r). It satisfies the implicit equation

t− T = |r − x(T )|/c . (5)

Differentiating

1− ∂T

∂t
=− (r − x(T ))`

|r − x(T )|
v`(T )/c

∂T

∂t
, (6)

1− ∂T

∂t
=− n · β(T )

∂T

∂t
. (7)

Thus
∂T

∂t
=

1

1− n · β(T )
. (8)

Similarly,

− ∂T

∂rk
=

(r − x(T ))`

|r − x(T )|

(
δ`k −

vo(T )`
c

∂T

∂rk

)
. (9)

Thus
∂T

∂rk
=

−nk
(1− n · β(T ))

. (10)

(b) The Lorenz gauge condition reads

1

c
∂tϕ+ ∂iA

i = 0 . (11)

In the far field we neglect differentiating 1/R and n which lead to subleading terms in
1/R. Then in the far field we differentiate

1

c
∂tϕ =

e

4πRc2

n · a
(1− n · β)2

∂T

∂t
, (12)

=
e

4πRc2

n · a
(1− n · β)3

. (13)

Similarly,

∂iA
i =

e

4πRc2

[
ai

(1− n · β)

∂T

∂ri
+

βi

(1− n · β)2
(n · a)

∂T

∂ri

]
, (14)

=
e

4πRc2

[
−n · a

(1− n · β)2
+

−n · β
(1− n · β)3

(n · a)

]
, (15)

=
e

4πRc2

[
−n · a

(1− n · β)3

]
. (16)

So we verify that
1

c
∂tϕ+ ∂iA

i = 0 . (17)
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(c) In this case β × a = 0, |n× n× a| = a sin(θ), and thus the magnitude of E is

E =
e

4πRc2

a sin θ

(1− β(T ) cos θ)3
(18)

So the energy per time per solid angle

dW

dtdΩ
= lim

r→∞
c|rE|2 (19)

=
e

(4π)2c3

a2 sin2 θ

(1− β(T ) cos θ)6
(20)

where a = vo/τ , and β(T ) = βo(1−T/τ). The energy per retarded time per solid angle
is

dW

dTdΩ
=
dW

dtdΩ

dt

dT
(21)

=
e2

(4π)2c3

a2 sin2 θ

(1− β(T ) cos θ)5
(22)

The energy per time is useful if you want to know whether a remote detector will burn
up. The energy per retarded time is useful if you want to calculate how much energy
is lost to radiation over a given element of a particles trajectory, dx = v(T )dT .

(d) We see that the denominator function, 1− βo cos θ, is approaching zero at small angle
since βo ' 1. Expanding βo ' 1− 1

2γ2
and cos θ ' 1− θ2

2
,

1

1− n · β
' 1

1
2γ2o

+ θ2

2

=
2γ2

o

1 + (γoθ)2
. (23)

So the characteristic angle is θ ∼ 1/γo. For a 1 GeV electron, γ ' E/mec
2 ∼ 2000. So

θ ∼ 1/2000.

(e) The total energy is
dW

dΩ
=

∫ τ

0

dT
dW

dTdΩ
. (24)

So with the result of Eq. 21 we have

dW

dΩ
=

e2

(4π)2c3
(a2 sin2 θ)

∫ τ

0

dT
1

(1− βo(1− T
τ

) cos θ)5
, (25)

=
e2

(4π)2c3

τ(a2 sin2 θ)

4βo cos θ

[
−1

(1− βo(1− T
τ

) cos θ)4

]τ
0

, (26)

=
e2

(4π)2c3

τ(a2 sin2 θ)

4βo cos θ

[
1

(1− βo cos θ)4
− 1

]
. (27)
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In the ultra relativistic limit we have

1

1− βo cos θ
' 1

1
2γ2o

+ θ2

2

=
2γ2

o

1 + (γoθ)2
, (28)

and thus
dW

dΩ
' e2a2τ

(4π)2c3
4γ2

o

[
(γoθ)

2

(1 + (γoθ)2)4

]
. (29)
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2 Scattering at different scales

Consider the scattering of an electromagnetic plane wave of wavenumber k and frequency
ω propagating in the z direction. The incident light is linearly polarized in the y direction,
E(t, r) = ŷE0e

ikz−iωt. The light is scattered by two small dielectric spheres of radius a
separated by a distance b with b � a. The first sphere is centered at the origin, while the
second sphere is located on the z axis with z = b. The two spheres have dielectric constant
ε = 1 + χ with χ� 1.

θ

x

y (pol. of incoming light)

z

b

Light

(a) (5 points) Consider the scattering of long wavelength light kb � 1. Determine the
total cross section of the two spheres to leading order in kb.

(i) How does the cross section of the two spheres compare to the cross section of a
single sphere?

(b) (5 points) Remaining in the long wavelength limit kb� 1, determine the electric field
as a function of time at a specific point along the x axis, r = (x, y, z) = (2b, 0, 0). Hint:
is this point in the near or far field?

(c) (5 points) Now consider the scattering of shorter wavelength light with kb ∼ 1 but still
ka � 1. Determine the differential cross section dσ/dΩ of the two spheres for light
scattered at an angle θ in the z, x plane (see diagram above).

• Sketch the differential cross section dσ/dΩ for scattering at θ = π/2 (along the x
axis) as a function of k for kb = 0 . . . 8π.

(d) (5 points) Now instead of a plane wave of light, consider the scattering of a wave packet
with mean wavenumber k̄ and bandwidth ∆k, with ∆k/k ' 1/10. The differential cross
section is the energy scattered per solid angle divided by the total energy in the wave
packet.

• Qualitatively sketch the differential cross section dσ/dΩ for scattering at θ = π/2
as a function of k̄, and contrast this sketch with the ∆k = 0 limit drawn in the
second part of (c). At large k how does the cross section for the two spheres
compare to the cross section for one sphere?
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Solution

(a) To leading order in kb the external field induces an identical dipole moment in each
sphere of magnitude χV E0. The two dipoles then radiate electromagnetic radiation
via dipole radiation The total electric dipole moment of the two spheres is

p = 2χV E0e
−iωt ŷ (30)

The radiated power for dipole radiation

P =
ω4

4πc3

|p|2

3
(31)

So the cross section is

σ =
P

c
2
|E0|2

=
ω4

4πc2

2

3
|p0|2 (32)

Collecting all factors

σ =
P

c
2
|E0|2

=
ω4

4πc4

8

3
χ2V 2 (33)

(i) The total dipole moment is twice as large as a single sphere. The cross goes as
the square of the dipole moment and is therefore four times as large

(b) This is in the near field. The electric field is just the electric field of two dipoles,
one situated at the origin and one situated at z = b. The field from an electric dipole
is

E =
3(p · n)n− p

4πr3
. (34)

where n is the vector from the dipole origin to the observation point, and p is the
dipole moment. In the current setup, p points in the y direction and n lies in the x, z
plane for both dipoles. Thus the sum of the fields from the two dipoles is

E =
−p

4πr3
1

+
−p

4πr3
2

(35)

where r1 and r2 are the distances to the two induced dipole moments.

r1 =2b (36)

r2 =
√

(2b)2 + b2 =
√

5b (37)

This leads to

E(t) = −ŷ χV
4πb3

E0e
−iωt

[
1

8
+

1

5
√

5

]
(38)

(c) In this case the two dipoles are out of phase

p1 =ŷχV E0e
−iωt (39)

p2 =ŷχV E0e
−iωt+ikb (40)
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The radiation is

Arad =
e−iω(t−r/c)

4πrc

∫
d3roJ(ro)e

−ikn·ro (41)

Thus examining this integral we see that there is an overall phase difference between
the two dipoles

− kn · ro = −kb cos θ (42)

So

E1 =
−ω2e−iω(t−r/c)

4πrc2
n× n× p1 (43)

E2 =
−ω2e−iω(t−r/c)

4πrc2
n× n× p2e

−ikb cos θ (44)

For n in the x, z plane and p1 and p2 oriented in the y direction we have n × n × ŷ
= −ŷ

dP

dΩ
=
c

2
|E1 +E2|2 (45)

=
ck4

32π2
(χV )2E2

0

∣∣1 + eikb(1−cos θ)
∣∣2 (46)

So the cross section is

dσ

dΩ
=

k4

16π2
(χV )2

∣∣1 + eikb(1−cos θ)
∣∣2 . (47)

To make a graph we first note that∣∣1 + eikb(1−cos θ)
∣∣2 = |2 cos(kb sin2(θ/2))|2 . (48)

Thus at θ = π/2 we are plotting

dσ

dΩ

∣∣∣∣
θ=π/2

∝ (kb)4 cos2(kb/2) , (49)

We graph this function below
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(d) If the wave packet has a finite band width ∆k, it has a spatial size of order ∆x ∼
1

∆k
. When this size comes comparable to the spacing b, i.e. ∆x ∼ b or ∆k b ∼ 1, the

interference between the scattering centers will not be complete. Indeed, when the mean
Fourier compment of the wave packet k̄b is at an interference maximum, most of the Fourier
components in the packet, k ∼ (k̄±∆k) b, will not be at an interference maximum if ∆k b ∼ 1.
In the limit ∆x� b (or ∆kb� 1) the wave packet will scatter off the first sphere and then
scatter of the second sphere. The cross section for scattering off of the two spheres is thus
twice the cross section for scattering off one of the spheres in this limit.

Since ∆k/k̄ ∼ 10, when
k̄ b ∼ 10 , (50)

the interference betweeen the two scattering centers will begin to wash out. A schematic
sketch of the cross section in this case is shown below. In the coherent limit (part (c)) the
cross section varies between zero and four times the cross section for the scattering off a single
sphere correspoinding to destructive and constructive interference respectively. If there is
a finite coherence length ∆x then the cross section transitions from the coherent limit to
the incoherent limit. In the incoherent limit the cross section is twice the cross section of a
single sphere.
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3 Fields of a non-relativistic particle

A charge particle of charge q moves non-relativistically with trajectory R(t):

(a) (6 pnts) Show that two of the four Maxwell equations are satisfied by expressing the
fieldsE,B in terms of the scalar and vector potentials, Aµ = (ϕ,A). Use the remaining
Maxwell equations to derive the equations for the scalar and vector potentials in the
Lorentz gauge.

(b) (8 pnts) Recall that the Green function of the wave equation is1

G(t− to, r − ro) =
θ(t− to)

4π|r − ro|
δ(t− to −

|r − ro|
c

) . (52)

Use this Green function to derive the potential, ϕ and A, that are appropriate in the
far field and the non-relativistic limit. Explicitly explain how the non-relativistic and
far-field approximations are used at various points in the derivation to arrive at the
final result.

(c) (4 pnts) If the particle is speeding up along the z axis

R(t) =

(
vot+

1

2
at2
)
ẑ ,

determine the electric field in the far field as measured on the x-axis. What is the
polarization of the radiated field when measured on this axis?

(d) (2 pnts) Assuming the motion as in part (c), determine the power radiated per solid
angle in the x̂ direction.

1 The Green function satisfies (
1

c2
∂2t −∇2

)
G(t, r) = δ(t)δ3(r) (51)
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Solution

(a) The source free Maxwell are satisfied beacuase partial derivatives commute:

∂iB
i = ∂iε

ijk∂jAk =0 (53)

−1

c
∂tB

i − (∇× E)i =− ∂tεijk∂jAk − εijk∂j
(
−1

c
∂tAk − ∂kϕ

)
(54)

=0 (55)

The first sourced maxwell equations

−∇ ·E = ρ , (56)

becomes with E = −1
c
∂tA−∇ϕ

−2ϕ− 1

c
∂t(

1

c
∂tϕ+∇ ·A) = ρ . (57)

Then, writing the second sourced maxwell equation

∇×B =
j

c
+

1

c
∂tE (58)

in terms of A and φ, using

∇×∇×A =−∇2A+∇(∇ ·A) , (59)

yields

−2A+
1

c
∇(

1

c
∂tϕ+∇ ·A) =

j

c
. (60)

In the Lorentz gauge,
1

c
∂tϕ+∇ ·A = 0 , (61)

we find two wave equations

−2ϕ =ρ , (62)

−2A =
j

c
. (63)

(b) Using the green function of the wave equation

ϕ(t, r) =

∫
dtod

3ro
1

4π|r − ro|
δ(t− to −

|r − ro|
c

)eδ3(ro −Ro(to)) (64)

A(t, r) =

∫
dtod

3ro
1

4π|r − ro|
δ(t− to −

|r − ro|
c

)ev(to)δ
3(ro −Ro(t)) (65)
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Integrating over ro

ϕ(t, r) =

∫
dto

1

4π|r −R(to)|
δ(t− to −

|r −R(to)|
c

) e (66)

A(t, r) =

∫
dtod

3ro
1

4π|r −R(to)|
δ(t− to −

|r −R(to)|
c

) ev(to) (67)

In the far field we approximate

1

4π|r −R(to)|
' 1

4πr
(68)

Integrating over to involves

δ(t− to −
|r −R(to)|

c
) =

1

1− n · β(T )
δ(to − T ) . (69)

where T (the retarded time) satisfies

T = t− |r −R(T )|
c

' t− r/c− n ·R(T )

c
(70)

The last approximation is a far field approximation. In a non relativistic limit

T ≈ t− r

c
(71)

and

δ(t− to −
|r −R(to)|

c
) ≈ (1 + n · β(t− r/c))δ(to − (t− r/c)) . (72)

So to linear order in v/c, we have

A(t, r) ' 1

4πr
e
v(t− r/c)

c
. (73)

For the scalar potential ϕ, we integrate over to and expand to first order in v/c:

ϕ(t, r) =
1

4πr

e

1− n · v(T )/c
' e

4πr
(1 + n · v(t− r/c)/c) . (74)

(c) Computing the electric field we have to leading order in 1/r

E =− 1

c
∂tA−∇ϕ , (75)

≈ e

4πrc2
(−a+ n(n · a)) , (76)

where we used
∇r = n , (77)

when differentiating the potentials of part (b).

Then for a particle speeding up in the z-direction, n = x̂ and we see that E is polarized
in the negative z direction. The electric field on the x-axis is

E = − 1

4πrc2
a ẑ (78)

12



(d) The power radiated on the x−axis is

dP

dΩ
= c|rE|2 =

e2

16π2c3
a2 . (79)
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4 EM Comps Problem, Fall 2015, JV

A current is driven through a ring of radius R in the xy plane (see below). Using a complex
notation, the current has a harmonic time dependence, J(t, r) = e−iωtJ(r), and the spatial
dependence is

J(r) = I0 sin(φ) δ(ρ−R)δ(z)φ̂ . (80)

z

x

y

φ

1. (4 pnts) Sketch the current flow at time t = 0 and t = π/ω, and determine the charge
density ρ(t, r). Show that it corresponds to an oscillating electric dipole, and determine
the electric dipole moment.

2. In the long wavelength limit, and in the radiation zone, determine each of the following
quantities in the xz plane2:

(a) (6 pnts) The vector potential A(t, r) in the Lorentz gauge.

(b) (4 pnts) The B(t, r) field.

(c) (4 pnts) The (time averaged) angular distribution of the radiated power, dP/dΩ.

3. (2 pnts) What is the polarization of the radiated electric field when viewed along the
z axis ?

2Specifically compute the fields and power at the spacetime point r = (x, y, z) = (r sin θ, 0, r cos θ).
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Solution

We use Heavyside-Lorentz units.

1. Using current conservation, ∂tρ+∇·J = 0 and a harmonic time dependence, ρ(t, r) =
e−iωtρ(r),

− iωρ(r) = −∇ · J(r) = − 1

R

∂

∂φ
Jφ . (81)

Thus

ρ(r) = −Io cosφ

−iωR
δ(z)δ(ρ−R) (82)

Note, the charge distribution gives rise to a net dipole moment

p =

∫
d3rρ(r)r =

IoR

−iω
(−πx̂) (83)

pointed along the negative x̂ direction. If this is recognized then the remainder of this
problem is just quoting the results of the electric dipole radiation.

2. a) In the dipole approximation we have

A(t, r) =
e−iωt+ikr

4πr

∫
d3r′J(r′)/c =

e−iωt+iikr

4πr

∫
ρdρdφdz φ̂ (I0/c) sinφ δ(ρ−R)δ(z) .

(84)
With φ̂ = − sinφx̂+ cosφŷ we obtain

A(t, r) =
e−iωt+ikr

4πr
R(I0/c)π (−x̂) , (85)

=
e−iωt+ikr

4πr

−iω
c
p (86)

b) Then

B = ∇×A , (87)

= n× 1

c

∂

∂t
A(t, r) , (88)

=
e−iωt+ikr

4πr
(n×−x̂)(−ikR)(I0/c) (89)

=
e−iωt+ikr

4πr
cos θ(−ŷ)(−ikπR)(I0/c) (90)

c) The radiated power is

dP

dΩ
=
c

2
Re(r2n · (E ×B∗)) . (91)

With E = −n×B, we have

n · (−n×B)×B∗ = |B|2 , (92)
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and

dP

dΩ
=

c

2
r2|B|2 (93)

=
c

32π2
cos2 θ (πkRI0/c)

2 (94)

It is perhaps useful to convert to MKS units:

I0

c
→ √

µoI (95)

c → 1
√
µoεo

(96)

and using
√
µo/εo = 376 Ohm we find

dP

dΩ
= 376 Watts

(
I0

amps

)2
(kR)2

32
cos2 θ (97)

3. Since the magnetic field is in the −ŷ direction, for light propagating along the z axis
the electric field is in the −x̂ direction, i.e. along the direction of the dipole moment.

16



5 Physics of the relativistic stress tensor

Consider a capacitor at rest. The area of each plate is A, and the electric field between the
plates is E. The plates are orthogonal to the x−axis (see figure). The rest mass of each plate
is Mpl. The plates are kept a distance d apart by four thin columns (not shown). We assume
that each of these columns have mass Mcol, and there is a stress tensor in the columns due
to the electric attraction of the plates. (There is also a surface stress tensor in the plates
due to the electric repulsion of the charges on the plates, but you won’t need this.)

1. Write down the expression for the energy-momentum tensor of the electromagnetic
field Θµν

em in terms of the Maxwell field strength F µν . Show that the total rest mass
Mc2 =

∫
d3rΘ00

tot of the capacitor setup is:

Mtotc
2 = 2Mplc

2 + 4Mcolc
2 +

1

2
E2Ad (98)

Remark. In practice the field term is very small compared to the first two terms,
but we will include its effect in this problem.

2. Determine the non-vanishing components of the electromagnetic stress tensor inte-
grated over space: ∫

d3rΘαβ
em. (99)

(Hints:
∫

Θxx
em,
∫

Θyy
em,
∫

Θzz
em,
∫

Θ00
em are non-zero. )

3. Show that for a stationary configuration that∫
d3rΘij

tot(r) = 0 (100)

(Hints: Explain why ∂kΘ
kj
tot = 0, and then study the expression ∂k(x

iΘkj
tot) )

4. Determine
∫

col
Θzz

mech in the columns, and interpret your result physically by showing
the forces involved with a free body diagram.

5. Consider now an observer in frame K who is moving in the positive z−direction with
velocity v relative to the rest frame of the capacitor. According to special relativity
the energy of the capacitor in frame K is γMc2 where γ = (1− (v/c)2)1/2.
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(a) Show that the integrated electromagnetic stress tensor in frame K, Θ00
em, is∫

d3rΘ00
em(r) =

1

2
E2Ad

√
1− (v/c)2 (101)

Here r are the boosted coordinates.

(b) Show that the integrated mechanical stress tensor including the plates and the
columns∫

d3rΘ00
mech(r) = γ (2Mplc

2 + 4Mcolc
2) +

1

2
E2Ad

(v/c)2√
1− (v/c)2

(102)

(c) Use these results to compute ∫
d3rΘ00

tot(r) (103)

in frame K and comment on the simple result.
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