
1 A charge in a rectangular tube

Consider a point charge placed in an infinitely long grounded rectangular tube as shown
below. The sides of the square cross sectional area of the tube have length a.

b

a

1. (2 points) Show that the solutions to the homogeneous Laplace equation (i.e. without
the extra point charge) are linear combinations of functions of the form

Φ(kxz) Φ(kyy) e±κzz where Φ(u) =
{

cos(u) or sin(u) (1)

for specific values of kx, ky and κz. Determine the allowed the values of kx, ky and κz
and their associated functions.

2. (4 points) Now consider a point charge displaced from the center of the tube by a
distance b in the x direction, i.e. the coordinatess of the charge are ro = (x, y, z) =
(b, 0, 0). Use the method of images to determine the potential.

3. (7 points) As an alternative to the method of images, use a series expansion in terms
of the homogeneous solutions of part (a) to determine the potential from the point
charge described in part (b).

4. (7 points) Determine the asymptotic form of the surface charge density, and the force
per area on the walls of the rectangular tube far from the point charge, i.e. z � a.
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Solution

1. The Laplace equation is
−∇2ϕ = 0 (2)

Separating variables with ϕ = X(x)Y (y)Z(z) we must have

−d
2X

dx2
=k2xX (3a)

−d
2Y

dy2
=k2yY (3b)

−d
2Z

dz2
=k2zZ (3c)

In order to satisfy Eq. (2), the separation constants satisfy

k2x + k2y + k2z = 0 (4)

and thus
d2Z

dz2
= κ2Z with κ =

√
k2x + k2y (5)

The solutions to Eq. (3a) may be either sin or cos

X(x) = Φ(kxx) , (6)

with kx at this point still arbitrary. In order to satisfy the boundary conditions
X(±a/2) = 0, we require for the cos functions that

kxa/2 = (n+ 1
2
)π . (7)

Similarly, for the sin functions
kxa/2 = nπ . (8)

Thus, the general form is

Xn(x) = Φn(knx) n = 0, 1, . . . (9)

with kn = (n+ 1)π/a and

Φn(u) =

{
cos(u) n even

sin(u) n odd
. (10)

The Y (y) direction follows by analogy

Ym(y) Φm(kmx) m = 0, 1, . . . (11)

with km = (m+ 1)π/a The solutions to the z direction are

Z(z) = e±κz κ =
√
k2n + k2m (12)
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Figure 1: Arrangement of image charges. The black charges idicate plus charges, while the
white charges indicate negative charges. The origin of coordinates is indicated with the
dashed lines. The real charge is displaced by a distance b from the origin.

2. The image charges may be placed in a rectangular lattice as shown below. Their are
four types of charges with coordinates

r1(n,m) =(b+ 2na)x̂+ 2maŷ (13)

r2(n,m) =((2n+ 1)a− b)x̂+ 2maŷ (14)

r3(n,m) =(b+ 2na)x̂+ (2m+ 1)aŷ (15)

r4(n,m) =((2n+ 1)a− b)x̂+ (2m+ 1)aŷ (16)

where n,m are integers. Then the potential is

φ(r) =
q

4π

∞∑
n,m=0

1

|r − r1(n,m)|−
1

|r − r2(n,m)|−
1

|r − r3(n,m)|+
1

|r − r4(n,m)| (17)

3. For the potential at r due to a point charge at ro = (b, 0, 0), we expand the potential
as

φ(r; ro) =

(
2

a

)2 ∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0) gn,m(z) (18)

and substitute into the Poisson equation

−∇2ϕ(r; ro) = qδ(x− b)δ(y)δ(z) . (19)
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The leading factors (2/a)2 arise from the fact that we have not normalized the eigen-
functions X and Y ∫ a/2

−a/2
dxXn(x)Xn′(x) =

a

2
δn,n′ (20)∫ a/2

−a/2
dy Ym(y)Ym′(y) =

a

2
δm,m′ (21)

If gn,m(z) satisfies (
k2n + k2m −

∂2

∂z2

)
gn,m(z) = qδ(z) , (22)

then using the completeness relation

2

a

∑
n

Xn(x)Xn(xo) =δ(x− xo) (23)

2

a

∑
m

Ym(x)Ym(xo) =δ(y − yo) (24)

it is not difficult to show that Eq. (19) is satisfied.

The solution to Eq. (22) is

gn,m(z) =

{
Ae−κn,mz z > 0

Aeκn,mz z < 0
(25)

Integrating across the δ-fcn in Eq. (22) we have

− dg

dz

∣∣∣∣
z=0+

+
dg

dz

∣∣∣∣
0−

= q (26)

With this requirement A = q
2κn,m

and

φ(r; ro) =
4q

a2

∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0)
e−κn,m|z|

2κn,m
(27)

4. At asymptotic distances the terms with the smallest κn,m dominate the sum. We then
have only the contribution from n = m = 0 mode, and

κ0,0 =
√

2π/a . (28)

The potential reads

φ(r; ro) '
4q

a2
cos(πx/a) cos(πb/a) cos(πy/a)

e−κ0,0|z|

2κ0,0
(29)
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or

φ(r; ro) '
√

2q

πa
cos(πx/a) cos(πb/a) cos(πy/a)e−

√
2π|z|/a (30)

Let us calculate the charge density on the bottom plate

σ = n ·E = −∂yφ|y=−a/2 , (31)

=−
√

2q

a2
cos(πx/a) cos(πb/a) e−

√
2π|z|/a . (32)

Finally, the force per area on the bottom plate is

F y

A
=
σ2

2
, (33)

=
q2

a4
cos2(πx/a) cos2(πb/a) e−2

√
2π|z|/a . (34)

The direction of the force is into the tube. The other walls of the tube have the same
force per area.
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2 A ring and a sphere in a magnetic field

A sphere of radius a with magnetic permeability µ is placed in an external slowly varying
(homogeneous) magnetic field, Bext(t) = Bo(t) ẑ = B cos(ωt)ẑ. Placed above the sphere at
height zo is an ohmic ring of radius b and resistance R. The center of the ring coincides with
the z-axis and the plane of the ring points along the z-axis (see below).

a

zo

x

y

z

b

(a) (6 points) The induced magnetic moment of the sphere is proporitonal to the external
field

m = αBBext . (35)

Determine the polarizability, αB. Neglect the fields from the currents induced in the
ring.

(Hint: recall that for a permeable sphere in a constant external magnetic field, the
magnetic field outside the sphere is that of an induced magnetic dipole plus the external
field, while the magnetic field inside the sphere is constant, Bin = Bin ẑ. Determine
αB and Bin from the appropriate boundary conditions at the surface of the sphere.)

(b) (6 points) Determine the current induced in the ring.

(c) (2 points) Under what conditions can the induced magnetic fields from the ring be
neglected in part (a)?

(d) (6 points) Determine the force on the ring.
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Solution

(a) The boundary conditions read

n× (Hout −Hin) =0 (36)

n · (Bout −Bin) =0 (37)

In terms of components

Hθ,out −Hθ,in =0 (38)

Br,out −Hr,in =0 (39)

With the magnetic field of a dipole

Bout =Bo ẑ +
3r̂(r̂ ·m)−m

4πr2
(40)

Bin =Bo ẑ +
3r̂(r̂ ·m)−m

4πr2
(41)

we see that

Br,out =
2m cos θ

4πa3
+Bo cos θ (42)

Hθ,out =
m sin θ

4πa3
−Bo sin θ (43)

Inside we have

Br in =Bin cos θ (44)

Hθ in =− 1

µ
Bin sin θ (45)

Putting together the ingredients we have

m

4πa3
−Bo +

Bin

µ
=0 (46)

2m

4πa3
+Bo −Bin =0 (47)

Solving these equation for m and Bin we get

m =Bo(4πa
3)
µ− 1

2 + µ
(48)

Bin =Bo
3µ

2 + µ
(49)

(b) The flux through the loop has two contributions: the external magnetic field and the
induced dipole. The external dipole contribution is simply

ΦB,ext = Bo(t)πb
2 . (50)

7



The dipole contribution is most easily found using the vector potential

ΦB,dip =

∫
B · da =

∮
A · d` . (51)

With the vector potential of the dipole

A =
m× r̂
4πr2

(52)

we have

Aφ =
m sin θ

4π(z2 + b2)
(53)

So with sin θ = b/
√
z2 + b2 we have

ΦB,dip =
m(t)

2

b2

(z2 + b2)3/2
(54)

=αB
Bo(t)

2

b2

(z2 + b2)3/2
(55)

Thus the magnetic current is

I(t) = − 1

cR∂tΦB(t) (56)

Or

I(t) =
−Ḃo(t)πb

2

cR

[
1 +

αB
2π

1

(z2 + b2)3/2

]
(57)

(c) The current in the loop produces a field at the sphere of order I(t)/[c(b2 + z2)1/2]. We
should compare this field to Bo, yielding the condition:

ωBoπb
2

c2R
1

(z2 + b2)1/2
� Bo . (58)

Taking b and z the same order of magnitude b ∼ z as drawn in the figure,

ωπb

2πc2R � 1 . (59)

This is the answer.

It is useful to interpret the answer. The resistance is R = 2πb/(σA) where A is the
cross section of the wire and σ is the conductivity, yielding

ωσ

4πc2
A� 1 . (60)

Recognizing the magnetic diffusion coefficient D=c2/σ of the wire and the skin depth
δ(ω) ∼

√
D/ω, we rewrite the condition as

A

πδ2(ω)
� 1 . (61)
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(d) For the force we have the contribution of the constant field Bo and the field of the
sphere Bdip.

Using the right hand rule we see that the constant field produces no net force. All the
forces of from the static field lie in the plane of the loop, tending to deform the ring
but providing no net force.

From the dipole we have the Lorentz force

F z =

∫
bdφ

I(t)

c
ẑ · (φ̂×Bdip) . (62)

With the diople field,

Bdip =
3r̂ · (r̂ ·m)−m

4πr3
, (63)

the magnetic moment m(t) = αBBo(t)ẑ, the cross products

ẑ · (φ̂× r̂) = ẑ · θ̂ = − sin θ , (64)

ẑ · (φ̂× ẑ) = 0 , (65)

we find

F z = −
∫
bdφ I(t)/c

3 sin θ cos θm(t)

4π(z2o + b2)3/2
(66)

Thus

F z =

(
−I(t)Bo(t)b

c

)
3

4

sin(2θ)αB
(z2o + b2)3/2

(67)

This is the answer after substituting the results of part (b).

After minor manipulations we find

F z =

(
dB2

o(t)

dt

πb3

c2R

)
3

8

sin(2θ)αB
(z2o + b2)3/2

[
1 +

αB
2π(z2o + b2)3/2

]
(68)
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3 Waves in Metals

Consider an ohmic metal with high (but not infinite) conductivity σ and magnetic perme-
ability1 µ = 1, so that B = H .

1. (6 pnts) Show that for harmonic time dependence, and high conductivity2 σ � ω, that
damped wave like solutions propagating in z-direction in the metal take the approxi-
mate form:

H(t, z) =Hce
−iωt+ikcz (69)

where3

kc =
1 + i√

2

√
σω

c
(70)

2. (4 pnts) The electric field obeys a similar equation, E(t, z) = Ece
−iωt+ikcz. Use the

Maxwell equations to express the amplitude of the electric field Ec in terms of the
magnetic field Hc.

3. (4 pnts) Now consider a linearly polarized plane wave in vacuum of frequency ω, which
is normally incident upon a semi-infinite metal block with infinite conductivity as
shown below.

vacuum infinite metal block

incident light

z = 0

When the metal has infinite conductivity, the amplitude of the reflected equals equals
the amplitude of the incident wave, but the polarization of the reflected wave is in-
verted. Explain this familiar fact using the appropriate boundary conditions.

4. (6 pnts) Now consider the same reflection problem as in part 3, but this time the metal
has a large (but finite) conductivity σ. Determine the electric and magnetic fields in
the metal to leading order in ω/σ. The amplitude of the incident wave is Eo.

5. (not part of exam). Determine the energy lost into the metal in terms of the input
magnetic field. (See lecture for two different ways to do this).

1 In SI units this reads µ = µo
2 In SI units this condition reads (σ/εo)� ω
3This is written in Heaviside-Lorentz units. In SI units kc = (1 + i)/

√
2
√
ω(σ/εo) /c, while in Gaussian

units, kc = (1 + i)/
√

2
√

4πσω /c.
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Problem: (8.1 Induction and the energy in static Magnetic fields)

Consider a closed circuit of wire formed into a circular coil of n turns with radius a,
resistance R, and self-inductance L. The coil rotates around the z-axis in a uniform magnetic
field H directed along the x-axis (see below).

(a) (b)

O θ

ω

O

a
HH

Figure 2: (a) side view; (b) top view.

a) (6 points) Find the current in the coil as a function θ for rotation at a constant angular
velocity ω. Here θ(t) = ωt is the angle between the plane of the coil and H (the x-axis).

b) (4 points) Find the externally applied torque that is needed to maintain the coil’s uniform
rotation.

Note: in all parts you should assume that all transient effects have died away.
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Solution:

a) Let I be the current in the coil, we have∮
coil

E · dr = IR = −LdI
dt
− 1

c

∂ΦH

∂t
, (71)

where the flux is given by ΦH = πa2 nH sin θ(t) with θ(t) = ωt. With these phase conven-
tions, the area vector of the loop points in the negative ŷ direction at t = 0 and in the x̂
direction at ωt = π/2. Thus the circulation of a positive current at t = 0 is specified with
the right hand rule with the thumb pointing in the negative ŷ direction.

From Eq. (71), we have the differential equation for the current,

L
dI

dt
+RI = −πa

2

c
nH ω cos(ωt) . (72)

We will write this as

L
dI

dt
+RI = −πa

2

c
nH ω e−iωt . (73)

with the understanding that one is supposed to take the real part. Taking a trial solution
I(t) = Iωe

−iωt, we solve for Iω and find

Iω =
πa2 nH ω

c

1

R− iωL . (74)

Thus

I(t) = −πa
2 nH ω

c

1

2

[
eiωt

R + iωL
+

e−iωt

R− iωL

]
= −πa

2 nH

c

ω√
R2 + ω2L2

cos(ωt+ φ) , (75)

where the phase φ = tan−1(−ωL/R).

b) The rotating coil has a magnetic dipole moment, µ(t) = I(t) ~A(t)/c. With the conventions
of the previous part we have

µ(t) =mo cos(ωt+ φ) (− sin(ωt)x̂+ cos(ωt)ŷ) . (76)

where

mo ≡
(
πa2n

c

)2
ω√

R2 + ω2L2
H . (77)

The torque on the loop is µ×H, and an external torque of τext = −µ×H is needed to keep
the coil rotating at a constant angular velocity is (with H = Hx̂) :

τext(t) = moH cos(ωt+ φ) cos(ωt) ẑ (78)
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4 (Part of) A time dependent dipole

Consider an electric dipole at the spatial origin (x = 0) with a time dependent electric dipole
moment oriented along the z-axis, i.e.

p(t) = po cos(ωt)ẑ , (79)

where ẑ is a unit vector in the z direction.

1. Recall that the near and far fields of the time dependent dipole are qualitatively dif-
ferent. Estimate the length scale that separates the near and far fields.

2. In the near field regime, estimate how the electric and magnetic field strengths decrease
with the radius r. (r is the distance from the origin to the observation point.)

3. Using a system of units where E and B have the same units (such as Gaussian or
Heaviside-Lorentz), estimate the ratio E/B at a distance r in the near field4. Is this
ratio large or small?

4. Determine the electric and magnetic fields to the lowest non-trivial order in the near
field (or quasi-static) approximation.

4In SI units this question reads, “Estimate the ratio E/cB at a distance r in the near field.”
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Solution

1. The speed of light and the frequency define a length scale

1/(Ro) = ω/c

For distances less than Ro a quasi-static approximation may be used. For distances
greater than Ro the finite speed of light must be considered to calculate the radiation
fields

2. There are various ways to do this. Perhaps the most direct is to use the gauge potentials
in the lorentz gauge. We will not do this, but use the Maxwell equations directly.

The electric field in the near field region is just the field of a dipole

E =
1

4πr3
[3(p · r̂)r̂ − p] (80)

Clearly E lies in r̂, θ̂ plane. So

E =
1

4πr3

[
(2po(t) cos θ) r̂ + (po(t) sin θ) θ̂

]
(81)

where po(t) = po cos(ωt)

Since

∇×B =
1

c
∂tE (82)

We try B in the φ direction, with Bφ(r, θ). Then

(∇×B)θ = −1

r
∂r(rBφ) =

1

4πr3
(∂tpo) sin θ (83)

Integrating with respect to r we find

Bφ =
1

4πr2c
(∂tpo) sin θ +

f(θ)/R2
o

r
(84)

Where f(θ) is a dimensionless integration constant, and we have inserted factors of Ro

to make up the dimensions. The terms proportional to 1/r can be dropped in the near
field regime since it is smaller by r/Ro than the 1

r2
term. Thus

Bφ =
1

4πr2c
(∂tpo) sin θ . (85)

Then one verifies that

(∇×B)r =
1

r sin θ
∂θ(sin θBφ) =

1

4πr3c
(∂tpo) 2 cos θ =

1

c
∂tEr (86)

showing that Bφ satisfies the Maxwell equations.
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Another way to do this is by recognizing a formal simlarity to the magnetic dipole.
The vector potential of a magnetic dipole satisfies

∇×A = B of a dipole =
3n(n ·m)−m

4πr3
(87)

and equals

A =
m× r̂
4πr2

. (88)

Here we are trying to solve

∇×B =
3n(n · ṗ(t)/c)− ṗ(t)/c

4πr3
. (89)

So we have (by analogy with the magnetic dipole)

B =
ṗ(t)/c× r̂

4πr2
=

1

4πr2c
(∂tpo) sin θ φ̂ (90)
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5 A magnetized sphere and a circular hoop

A uniformly magnetized sphere of radius a centered at origin has a permanent total magnetic
moment m = m ẑ pointed along the z-axis (see below). A circular hoop of wire of radius b
lies in the xz plane and is also centered at the origin. The hoop circles the sphere as shown
below, and carries a small current Io (which does not appreciably change the magnetic field).
The direction of the current Io is indicated in the figure.

Io

z

x

y

1. Determine the magnetic field B inside and outside the magnetized sphere.

2. Determine the bound surface current on the surface of the sphere.

3. What is the direction of the net-torque on the circular hoop? Indicate on the figure
how the circular hoop will tend to rotate and explain your result.

4. Compute the net-torque on the circular hoop.
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Solution

1. The magnetic field outside is one of a magnetic dipole, where all of magnetic moment
is placed at the origin

B =
1

4πr3
[3(m · r̂)r̂ −m] (91)

Inside sphere, the magnetic field is constant

B = Bo ẑ (92)

The constant Bo can be picked off from the boundary conditions.

The boundary conditions read

n× (B2 −B1) =
Kb

c
(93)

n · (B2 −B1) =0 (94)

Then from the boundary conditions at r = a

Br|out = Br|in . (95)

With the magnetic field outside the sphere

Br|out =
1

4πr3
2m cos θ , (96)

and inside the sphere
r̂ ·B|in = Bo r̂ · ẑ = Bo cos θ , (97)

comparison at r = a gvies

Bo =
1

4πa3
2m. (98)

For later reference we note that with M = m/(4πa3/3)

Ho = Bo −M = − m

4πa3
(99)

2. The surface current is in the azimuthal direction

K = Ko φ̂ (100)

Inside we have
B = Boẑ = Bo cos θ r̂ −Bo sin θ θ̂ , (101)

while outside we have

B =
1

4πr3
2m cos θ r̂ +

1

4πr3
m sin θ θ̂ . (102)

Then the jump condition reads

Bθ,out −Bθ,in =
Ko

c
. (103)
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Thus

Ko = c

(
1

4πa3
m+Bo

)
sin θ =

3c

4πa3
m sin θ (104)

One can verify using eq. (99)

Hθ,out −Hθ,in =

(
1

4πr3
m sin θ +Ho sin θ

)
= 0 (105)

as should be the case since H is continuous in the absence of external macroscopic
currents.

3. To compute the torque we first compute the lorentz force on a element of length
d` = bdθ.

dF =
Io
c
d`B⊥ (106)

=
Io
c
bdθ Br (107)

=
Io
c
bdθ

2m cos θ

4πb3
(108)

The right hand rule indicates that the force is in the −ŷ direction in the upper hemi-
sphere, and in the positive ŷ direction in the lower hemisphere. This implies that the
net torque points along the x-axis. This can be intuited by noting that the magnetic
moment of the hoop tends to align with the magnetic field from the sphere

4. The torque around the x-axis

τ =

∫
dτ =

∫
b cos θ dF (109)

=2

∫ π

0

b cos θ
Io
c
bdθ

2m cos θ

4πb3
(110)

=
4m(Io/c)b

2

4πb3

∫ π

0

dθ cos2 θ (111)

=
4m(Io/c)b

2

4πb3
π

2
(112)

=
2m

4πb3

[
Io
c
πb2
]

(113)
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3 D View Side View

R

a
+Q(t)
−Q(t)

6 A circular capicitor

A circular capacitor of radius R and separation a, with a � R, is charged with a slow
sinusoidal current, i.e. the charge on the plates is Q(t) = ±Qo sin(ωt) as illustrated above.
Neglect any fringing of the fields.

1. Determine the electric and magnetic fields in between the plates in a quasi-static ap-
proximation. Draw a picture to indicate the directions of the fields while the charge
on the bottom plate is positive and increasing.

2. What are the size of typical corrections to the fields computed in part (1) due to the
finite speed of light?

3. Write down the Maxwell equations for the gauge potentials φ and A in the Coulomb
gauge, ∇ ·A = 0

4. Determine the gauge potentials (φ,A) associated with the fields of part (1) and show
that that they satisfy the Maxwell equations found in part (3) to the required order.

This problem uses a different notation from the class. The curl of a vector
field F in cylindrical coordinates is with r =

√
x2 + y2 and θ = arctan(y/x)

∇× F =

(
1

r

∂Fz
∂θ
− ∂Fθ

∂z

)
r̂ +

(
∂Fr
∂z
− ∂Fz

∂r

)
θ̂ +

(
1

r

∂(rFθ)

∂r
− ∂Fr

∂θ

)
ẑ (114)

The Laplacian is

∆2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+
∂2f

∂z2
+

1

r2
∂2f

∂θ2
(115)
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Solution – Heavy Side Lorentz Units

1. The electric field is

∇ · E = ρ Ez =
Q(t)

A
ẑ (116)

The magnetic field is determined from Amperes law with no current

1

c

∂

∂t
E−∇×B = 0 (117)

So

Bθ(2πr) =
1

c
πr2∂tE

z (118)

Or

Bθ =
rω

2c

Q

A
cos(ωt) (119)

2. Corrections are of order (
Rω

c

)2

(120)

3. Then we have

−2ϕ− 1

c
∂t

(
1

c
∂tφ+∇ ·A

)
=ρ (121)

−2A+ ∂i

(
1

c
∂tφ+∇ ·A

)
= j/c (122)

Taking ρ = 0 and j = 0. Then taking the Coulomb gauge ∇ · A = 0 we have

−∇2ϕ =ρ (123)

−2A =− ∂i
(

1

c
∂tφ

)
+ j/c (124)

4. Solving the φ
− ∂i∂iφ = 0 =⇒ φ = −Ez(t)z (125)

For A we have only a z component. And, we may drop ∂2t in the quasi static approxi-
mation

− 1

c2
∂2tA

z +
1

r

∂

∂r

(
r
∂Az

∂r

)
=

1

c
∂t∂

zφ (126)

1

r

∂

∂r

(
r
∂Az

∂r

)
=
−ω
c

Q

A
cos(ωt) (127)

Integrating this we find

Az = −Qω
4Ac

cos(ωt)r2 (128)

A straight forward sanity check gives B = ∇× A

Bθ = − ∂

∂r
Az =

Q

A

rωo
2c

cosωt (129)
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