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Electrostatics

2.1

Elementary Electrostatics

Electrostatics:

(a)

(b)

Fundamental Equations

V-E=p (2.1)
V x E =0
F =qF

Given the divergence theorem, we may integrate over volume of V- E = p and deduce Gauss Law:

/E'dS:qtot
S

which relates the flux of electric field to the enclosed charge

For a point charge p(r) = ¢6*(r — r,) and the field of a point charge

—

qr — Ty
=1 9 2.4
Art|r — 7, |? (24)
and satisfies .
qr — 7, 3
= g5 (r -, 2.5
s = e =) (25)

The potential. Since the electric field is curl free (in a quasi-static approximation) we may write it as
gradient of a scalar

E=-Vo D(xy) — P(x,) = — /bE -de (2.6)
The potential satisfies the Poisson equation
~ V20 =p. (2.7)
The Laplace equation is just the homogeneous form of the Poisson equation
— V0 =0. (2.8)
The next section is devoted to solving the Laplace and Poisson equations
The boundary conditions of electrostatics
n-(Ey— Ep) =0 (2.9)
n x (Ey — E;) =0 (2.10)

i.e. the components perpendicular to the surface (along the normal) jump, while the parallel compo-
nents are continuous.
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(f) The Potential Energy stored in an ensemble of charges is

1
Up = 5/d?’gc p(r)®(r) (2.11)
(g) The energy density of an electrostatic field is
1
up =1 52 (2.12)

(h) Force and stress

i) The stress tensor records T% records the force per area. It is the force in the j-th direction per
area in the ¢-th. More precisely let n be the (outward directed) normal pointing from region
LEFT to region RIGHT, then

n;T% = the j-th component of the force per area, by region LEFT on region RIGHT — (2.13)

ii) The total momentum density g,,, (momentum per volume) is supposed to obey a conservation

law A - ‘ B
OhGloy +OT? =0 il = 0TV (2.14)

Thus we interpret the force per volume f7 as the (negative) divergence of the stress
fI=-0r1" (2.15)

iii) The stress tensor of a gas or fluid at rest is 7% = pd* where p is the pressure, so the force per
volume f is the negative gradient of pressure.

iv) The stress tensor of an electrostatic field is

Ty = —E'E’ + 169 E? (2.16)
Note that I will use an opposite sign convention from Jackson: T4, = *Tﬁckson' This convention

has some good features when discussing relativity.

v) The net electric force on a charged object is
Fi = /d3x p(r)E? (r) = —/dSniTij (2.17)

(i) For a metal we have the following properties

i) On the surface of the metal the electric field is normal to the surface of the metal. The charge per
area o is related to the magnitude of the electric field. Let n be pointing from inside to outside
the metal:

ii) Forces on conductors. In a conductor the force per area is

11 .
F' = iorEZ = 502 n' (2.19)
The one half arises because half of the surface electric field arises from o itself, and we should not
include the self-force. This can also be computed using the stress tensor

iii) Capacitance and the capacitance matrix and energy of system of conductors
For a single metal surface, the charge induced on the surface is proportional to the ®.

q=Cd.

When more than one conductor is involved this is replaced by the matrix equation:

qa = ZCAB(I)B .
B
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2.2

Multipole Expansion

Cartesian and Spherical Multipole Expansion

(a)

Cartesian Multipole expansion

For a set of charges in 3D arranged with characteristic size L, the potential far from the charges r > L
is expanded in cartesian multipole moments

p\r
dr, 70 2.20
/ “4r|r — 1| (2:20)
L gt , p-T P

where each terms is smaller than the next since r is large. Here monopole moment, the dipole moment,
and (traceless) quadrupole moments are respectively:

o = [ aplr) (222
p= /d3:c p(r)r (2.23)

Qij :/dgm p(r) (3rir; — r28;;) (2.24)
respectively. There are five independent components of the symmetric and traceless tensor (matrix)

Q;j. We have implicitly defined the moments with respect to an agreed upon origin r, = 0.

Forces and energy of a small charge distribution in an external field

Given an external field ®(r) we want to determine the energy of a charge distribution p(r) in this
external field. The potential energy of the charge distribution is

1 .
Ug = Qtot®(r,) —p- E(7,) — 6@”82-Ej (ro) + ... (2.25)

where 7, is a chosen point in the charge distribution and the Qo p, ¥ are the multipole moments
around that point (see below).

The multipoles are defined around the point r, on the small body:

Qtot :/d3ﬂcp(r) (2.26)
= / d*x p(r) or (2.27)
Qij Z/dBw p(r) (36r; 6r; — 6r% 5;5) (2.28)

where ér =r — r,.
The force on a charged object can be found by differentiating the energy
F=-V,Ug(r, (2.29)

For a dipole this reads
F=(p-V)E (2.30)

Spherical multipoles. To determine the potential far from the charge we we determine the potential
to be

O(r) = / d3rOM (2.31)

Am|r — 7,

m Yem(0, 6
_Z Z 2?£+1 : e+l ) (2~32)

=0 m=—¢
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Now we characterize the charge distribution by spherical multipole moments:
Gtm = / @1y p(ro) [ Yy (60 60)] (2.33)

You should feel comfortable deriving this using an identity we derived in class (and will further discuss
later)

1 1t
S Yo (6, 6)Y; (6, 2.34
T = 2 g T im0 i 06 (2.31)
Here
r~ =greater of r and r, (2.35)
r< =lesser of r and r, (2.36)
(2.37)
Could also notate this as , , ,
L = o 0 — ) + ——O(ro — ) (2.38)
Té>+1 Tt Tg-f-l o : :

I find this form clearer, since I know how to differntiate the right hand side using, df(x — z,)/dz =
0(x — xp)

(d) For an azimuthally symmetric distribution only gg are non-zero, the equations can be simplified using

Yo = /(204 1) /47 Py(cos ) to

o0
Py(cos0)
3 (2:39)
r
(e) There is a one to one relation between the cartesian and spherical forms

DPxy Dy, Pz < q11,410,91—1 (240)
sza (—)l.L - nyv @Iya (—)Z.'I)? @zy < q22,421,4920,92—1,42—2 (241)

which can be found by equating Eq. (2.31) and Eq. (2.20) using

7 = (sin € cos ¢, sin @ sin ¢, cos ) (2.42)
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