C Fourier Series and other eigenfunction expansions

We will often expand a function in a complete set of eigen-functions. Many of these eigen-functions are traditionally not normalized. Using the quantum mechanics notation we have

$$
\begin{equation*}
|F\rangle=\sum_{n} F_{n} \frac{1}{C_{n}}|n\rangle \quad \text { where } \quad F_{n}=\langle n \mid F\rangle \quad \text { and } \quad\left\langle n_{1} \mid n_{2}\right\rangle=C_{n_{1}} \delta_{n_{1} n_{2}} \tag{C.1}
\end{equation*}
$$

or more prosaically:

$$
\begin{align*}
F(x) & =\sum_{n} F_{n} \frac{1}{C_{n}}\left[\psi_{n}(x)\right], \tag{C.2}\\
F_{n} & =\int d x \psi_{n}^{*}(x) F(x), \tag{C.3}\\
\int d x\left[\psi_{n_{1}}^{*}(x)\right]\left[\psi_{n_{2}}(x)\right] & =C_{n_{1}} \delta_{n_{1} n_{2}} . \tag{C.4}
\end{align*}
$$

We require that the functions are complete (in the space of functions which satisfy the same boundary conditions as F) and orthogonal

$$
\begin{equation*}
\sum_{n} \frac{1}{C_{n}}|n\rangle\langle n|=I, \quad \text { or } \quad \sum_{n} \frac{1}{C_{n}} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{C.5}
\end{equation*}
$$

In what follows we show the eigen-function in square brackets
(a) A periodic function $F(x)$ with period L is expandable in a Fourier series. Defining $k_{n}=2 \pi n / L$ with n integer:

$$
\begin{align*}
F(x) & =\frac{1}{L} \sum_{n=-\infty}^{\infty}\left[e^{i k_{n} x}\right] F_{n} \tag{C.6}\\
F_{n} & =\int_{0}^{L} d x\left[e^{-i k_{n} x}\right] F(x) \tag{C.7}\\
\int_{0}^{L} d x\left[e^{-i k_{n} x}\right]\left[e^{i k_{n^{\prime}} x}\right] & =L \delta_{n n^{\prime}} \tag{C.8}\\
\frac{1}{L} \sum_{n=-\infty}^{\infty} e^{i k_{n}\left(x-x^{\prime}\right)} & =\sum_{m} \delta\left(x-x^{\prime}+n L\right) \tag{C.9}
\end{align*}
$$

(b) A square integrable function in one dimension has a Fourier transform

$$
\begin{align*}
F(z) & =\int_{-\infty}^{\infty} \frac{d k}{2 \pi}\left[e^{i k z}\right] F(k) \tag{C.10}\\
F(k) & =\int_{-\infty}^{\infty} d z\left[e^{-i k z}\right] F(z) \tag{C.11}\\
\int_{-\infty}^{\infty} d z e^{-i z\left(k-k^{\prime}\right)} & =2 \pi \delta\left(k-k^{\prime}\right) \tag{C.12}\\
\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k\left(z-z^{\prime}\right)} & =\delta\left(z-z^{\prime}\right) \tag{C.13}
\end{align*}
$$

(c) A regular function on the sphere (θ, ϕ) can be expanded in spherical harmonics

$$
\begin{align*}
F(\theta, \phi) & =\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left[Y_{\ell m}(\theta, \phi)\right] F_{\ell m} \tag{C.14}\\
F_{\ell m} & =\int d \Omega\left[Y_{\ell m}^{*}(\theta, \phi)\right] F(\theta, \phi) \tag{C.15}\\
\int d \Omega\left[Y_{\ell m}^{*}(\theta, \phi)\right]\left[Y_{\ell^{\prime} m^{\prime}}(\theta, \phi)\right] & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \tag{C.16}\\
\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left[Y_{\ell m}(\theta, \phi)\right]\left[Y_{\ell m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)\right] & =\delta\left(\cos \theta-\cos \theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) \tag{C.17}
\end{align*}
$$

(d) When expanding a function on the sphere with azimuthal symmetry, the full set of $Y_{\ell m}$ is not needed. Only $Y_{\ell 0}$ is needed. $Y_{\ell 0}$ is related to the Legendre Polynomials. We note that

$$
\begin{equation*}
Y_{\ell 0}=\sqrt{\frac{2 \ell+1}{4 \pi}} P_{\ell}(\cos \theta) \tag{C.18}
\end{equation*}
$$

A function $F(\cos \theta)$ between $\cos \theta=-1$ and $\cos \theta=1$ can be expanded in Legendre Polynomials.

$$
\begin{align*}
F(\cos \theta) & =\sum_{\ell=0}^{\infty} F_{\ell} \frac{2 \ell+1}{2}\left[P_{\ell}(\cos \theta)\right] \tag{C.19}\\
F_{\ell} & =\int_{-1}^{-1} d(\cos \theta)\left[P_{\ell}(\cos \theta)\right] F(\cos \theta) \tag{C.20}\\
\int_{-1}^{1} d(\cos \theta)\left[P_{\ell}(\cos \theta)\right]\left[P_{\ell^{\prime}}(\cos \theta)\right] & =\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}} \tag{C.21}\\
\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2}\left[P_{\ell}(\cos \theta)\right]\left[P_{\ell}\left(\cos \theta^{\prime}\right)\right] & =\delta\left(\cos \theta-\cos \theta^{\prime}\right) \tag{C.22}
\end{align*}
$$

(e) A function, $F(\rho)$ on the half line $\rho=[0, \infty]$, which vanishes like ρ^{m} as $\rho \rightarrow 0$ can be expanded in Bessel functions. This is known as a Hankel transform and arises in cylindrical coordinates

$$
\begin{align*}
F(\rho) & =\int_{0}^{\infty} k d k\left[J_{m}(k \rho)\right] F_{m}(k) \tag{C.23}\\
F_{m}(k) & =\int_{0}^{\infty} \rho d \rho\left[J_{m}(k \rho)\right] F(\rho) \tag{C.24}\\
\int_{0}^{\infty} \rho d \rho\left[J_{m}(\rho k)\right]\left[J_{m}\left(\rho k^{\prime}\right)\right] & =\frac{1}{k} \delta\left(k-k^{\prime}\right) \tag{C.25}\\
\int_{0}^{\infty} k d k\left[J_{m}(\rho k)\right]\left[J_{m}\left(\rho^{\prime} k\right)\right] & =\frac{1}{\rho} \delta\left(\rho-\rho^{\prime}\right) \tag{C.26}
\end{align*}
$$

