
Problem 1. Lienard-Wiechert for constant velocity

(a) For a particle moving with constant velocity v along the x−axis show using Lorentz
transformation that gauge potential from a point particle is

Ax(t, x,x⊥ = b) =
e

4π

γβ√
b2 + γ2(x− vt)2

(1)

at the point (t, r) = (t, x, y, z) = (t, x, b). So at the point (t, 0, b, 0) the gauge potential
Ax is is

Ax(t, x, y = b) =
e

4π

γβ√
b2 + (γvt)2

(2)

(b) Start by noting the definitions

T ≡ t− R

c
R = |r − r∗(T )| R ≡ Rn ≡ r − r∗(T ) n ≡ R

R
(3)

and drawing a picture for yourself. Then, after setting c = 1 and v = β to simplify
algebra, show that the Lienard Wiechert result,

A(t, r) =
e

4π

[
v/c

R(1− n · β)

]
ret

. (4)

gives the same result as Eq. (2).

(c) Show that the Lienard-Wiechert potential, Eq. (4), and analogous equation for Φ can
be written covariantly

Aµ(X) = − e

4π

[
Uµ

U ·∆X

]
ret

, (5)

where ∆Xµ is the difference in the space-time coordinate four vectors of the emission
and observation points, and Uµ is the four velocity of the particle. What is ∆X ·∆X ≡
∆Xµ∆Xµ? Can []ret be expressed covariantly?
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Problem 2. The current and a tutorial on variational derivatives

• Variational derivatives cause students great hardship. Its meaning is discussed in what
follows. We are considering an integral1 depending on a path x(t) starting at x1 and
ending at x2. For example

I[x] =

∫ t2,x2

t1,x1

dt L(x(t)) . (6)

Then we deform the path
x(t)→ x(t) + δx(t) (7)

where the endpoints are unchanged δx(t1) = δx(t2) = 0. Then the integral changes
and the result must be proportional to δx(t) for smal variations

δI[x] =

∫
dt

[
∂L(x(t))

∂x(t)

]
δx(t) (8)

We say that the thing in square bracekts (i.e. the thing sitting in front of
∫
dt δx(t))

is the variation derivative of the functional

δI[x]

δx(t)
= thing in front of

∫
dt δx(t) =

∂L(x(t))

∂x(t)
(9)

When working with variations, I prefer to work with the change in the integral (i.e.
Eq. (8)), which somehow means more to me than some mysterious new differentiation
symbol, and always works.

• However, as the formalism of variational derivatives is common, let us develop it.
Clearly

x(t) =

∫
dt x(t′) δ(t− t′) . (10)

Then following the steps leading to Eq. (8) and Eq. (9) we see that

δx(t)

δx(t′)
= δ(t− t′) . (11)

Then the normal rules of differentiation apply

δL(x(t′))

δx(t)
≡ ∂L(x(t′))

∂x(t′)

δx(t′)

δx(t)
=
∂L(x(t′))

∂x(t′)
δ(t′ − t) . (12)

In this way if

I[x] =

∫ t2,x2

t1,x1

dt′ L(x(t′)) , (13)

1Technically the integral is a functional of x(t), i.e. something which takes a function (x(t)) and spits out
a number.
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then we can differentiate under the integral

δI[x]

δx(t)
=

∫ t2,x2

t1,x1

dt′
δL(x(t′))

δx(t)
, (14)

=

∫ t2,x2

t1,x1

dt′
∂L(x(t′))

∂x(t)
δ(t′ − t) (15)

=
∂L(x(t))

∂x(t)
, (16)

as we got before

• Some people who do numerics like to work discretely where xi = x(ti), with ti =
t1 + (i − 1)∆t being discretely spaced points, x0, x1, . . . . Then the integral is an
ordinary function of xi

I(x1, x2, x3 . . . ) =
∑
i

∆tL(xi) (17)

Then the variational derivative is just limit as ∆t goes to zero of

δI[x]

δx(ti)
=

1

∆t

∂I

∂xi
(18)

• We have discussed a function of t and the integral which is a functional of x(t). When
working with fields which are a function of space-time A(x) (here x = (ct,x)), the
integral is functional of A(x)

I[A] =

∫
d4xL(A(x)) . (19)

Then the variation of the integral is found by changing the function A(x) to a new
function

A(x)→ A(x) + δA(x) . (20)

The integral then changes to I → I + δI

δI =

∫
d4x

[
∂L(A(x))

∂A(x)

]
δA(x) (21)

The thing in square brackets in front of
∫
d4x δA(x) is defined as the variational deriva-

tive

δI[A]

δA(x)
=thing in front of

∫
d4x δA(x) (22)

=
∂L(A(x))

∂A(x)
in this simple case (23)

• In the same sense as before

A(x) =

∫
d4yA(y)δ4(x− y) . (24)
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Thus
δA(x)

δA(y)
= δ4(x− y) , (25)

and
δL(A(y))

δA(x)
≡ ∂L(A(y))

∂A(y)
δ4(y − x) . (26)

I have always found this slightly confusing and a bit too formal, and prefer the more
understandable change in integral, Eq. (21).

We defined the current as the variation of the action describing the interaction between
the particles and the gauge field Aµ, i.e. the thing in front of

∫
d4xδAµ . . .

δSint[A] =

∫
d4x (Jµ/c) δAµ (27)

This is often written
Jµ

c
=

δS

δAµ(t,x)
(28)

but means the same as Eq. (27)

(a) Consider the action of a non-relativistic point particle, xo(t)

S =

∫
dt

1

2
m ẋ2

o +
e

c

∫
dt vo(t) ·A(xo(t))−

∫
dt eΦ(t,xo) (29)

Compute the current and charge density by varying the action. You should find an
“obvious” result. Hint: first write

A(t,xo(t)) =

∫
d3xA(t,x) δ3(x− xo(t)) (30)

(b) Compute Jµ for a relativistic particle Xµ
o (τ)

S = −mc2
∫
dτ +

e

c

∫
Aµ(Xo)dX

µ
o (31)

(c) Show that if Sint[A] is gauge invariant that the current defined by Eq. (27) is automat-
ically conserved.
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Problem 3. (Optional but please read) The current in non-
relatitivistic quantum mechanics

Consider the Lagrangian of a non-relativistic quantum mechanical particle. We need a
Lagrangian for the wave function ψ(x). We set ~ = 1.

The action of a non-relatitivistic particle is

S[ψ, ψ∗] =

∫
dtd3x ψ∗i∂tψ −H (32)

Here

H = ψ∗
−∇2

2m
ψ + eψ∗(x)ψ(x) Φ(x) (33)

One can also integrate by parts and write this as

S[ψ, ψ∗] =

∫
dtd3x ψ∗i∂tψ −

(−i∂iψ)∗(−i∂iψ)

2m
− eΦ(t, x)ψ∗(t, x)ψ(t, x) (34)

(a) By varying the action with respect to ψ and ψ∗ (treat them as independent variables)
determine the equation of motion

δS[ψ, ψ∗]

δψ(t,x)
= 0

δS[ψ, ψ∗]

δψ∗(t,x)
= 0 (35)

Comment on the result

(b) In the presence of a vector potential Ai(t,x) we p→ p− eA/c. Then the Lagrangian
is then the same with the replacement

− i∂i → −i∂i −
e

c
Ai(x) (36)

Make this replacement. Determine the current at vanishing external field by varrying
the action and setting Ai = 0

J i

c
=

δS

δAi

∣∣∣∣
Ai=0

(37)

You should find the ususal quantum mechanical probability current

J =
1

2m
[ψ∗(−i∇ψ) + (−i∇ψ)∗ψ] (38)
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Problem 4. Energy during a burst of deceleration

A particle of charge e moves at constant velocity, βc, for t < 0. During the short time
interval, 0 < t < ∆t its velocity remains in the same direction but its speed decreases
linearly in time to zero. For t > ∆t, the particle remains at rest.

(a) Show that the radiant energy emitted per unit solid angle is

dW

dΩ
=

e2β2

64π2c∆t

(2− β cos θ) [1 + (1− β cos θ)2] sin2 θ

(1− β cos θ)4
(39)

(b) In the limit γ � 1, show that the angular distribution can be expressed as

dW

dξ
' e2β2

4π c

γ4

∆t

ξ

(1 + ξ)4
(40)

where ξ = (γθ)2.

(c) Show for γ � 1 that the total energy radiated is in agreement with the relativistic
generalization of the Larmour formula.
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Problem 5. An oscillator radiating

(a) Determine the time averaged power radiated per unit sold angle for a non-relativistic
charge moving along the z-axis with instantaneous position, z(T ) = H cos(ωoT ).

(b) Now consider relativistic charge executing simple harmonic motion. Show that the
instantaneous power radiated per unit solid angle is

dP (T )

dΩ
=

dW

dT dΩ
=

e2

16π2

cβ4

H2

sin2 θ cos2(ωoT )

(1 + β cos Θ sinωoT )5
(41)

Here β = ωoH/c and γ = 1/
√

1− β2

(c) In the relativistic limit the power radiated is dominated by the energy radiated during
a short time interval around ωoT = π/2, 3π/2, 5π/2, . . .. Explain why. Where does
the outgoing radiation point at these times.

(d) Let ∆T denote the time deviation from one of this discrete times, e.g. T = 3π/(2ωo) +
∆T . Show that close to one of these time moments:

dP (∆T )

dΩ
=

dW

d∆T dΩ
' 2e2

π2

cβ4

H2
γ6

(γωo∆T )2(γθ)2

(1 + (γθ)2 + (γωo∆T )2)5
(42)

(e) By integrating the results of the previous part over the ∆T of a single pulse, show that
the time averaged power is

dP (T )

dΩ
=

e2

128π2

cβ4

H2
γ5

5(γθ)2

(1 + (γθ)2)7/2
(43)

(f) Make rough sketches of the angular distribution for non-relativistic and relativistic
motion.
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Problem 6. Two current sheets under Lorentz boosts

Consider two large square sheets of conducting material (with sides of length L separated by
a distance d, d � L) each carrying a uniform surface current of magnitude Ko. (The total
current in each sheet is Io = KoL.) The current flows up the right sheet and returns down
the left sheet. The mass of the sheets is negligible. The sheets are mechanically supported
by four electrically neutral columns of mass Mcol and cross sectional area Acol (three shown).
Neglect all fringing fields.

z

L

d

x

y

Ko Ko

(a) (3 points) Write down the electromagnetic stress tensor Θµν
em covariantly in terms of

F µν and compute all non-vanishing components of F µν and Θµν
em inside and outside of

the sheets.

(b) (1 point) Compute the total rest energy of the system (or Mtotc
2) including the con-

tribution from the electromagnetic energy.

(c) (3 points) Determine the electromagnetic force per area on the current sheets (magni-
tude and direction) and the components of the mechanical stress tensor in the columns,
Θ00

mech and Θyy
mech (use the coordinates system in the figure). You can assume that the

stress is constant across the cross sectional area of the columns.

(d) (6 points) Now consider the system according to an observer moving relativistically
with velocity β = v/c up the z-axis.

(i) Determine the electric and magnetic fields (magnitudes and directions) using a
Lorentz transformation. Check that direction of the Poynting vector measured
by this observer is consistent with physical intuition.
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(ii) Determine the charge and current densities in the sheets according to this ob-
server. Are your charges and currents consistent with the fields computed in the
first part of (d)? Explain.

(e) (7 points) Now consider the system according to an observer moving relativistically
with velocity β = v/z to the right along the y-axis (use the coordinate system shown
in the figure).

(i) Determine the total mechanical energy in the columns according to this observer.

(ii) Determine the total electromagnetic energy according to this observer.

(iii) Determine the total energy of this configuration. Are your results consistent with
part (b)? Explain.

Comment: There is of course stress in the sheets. But, since it does not have a yy
component the stress in the sheets can be neglected in this problem.
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