Problem 1. A conducting slab

A plane polarized electromagnetic wave $\mathbf{E} = \mathbf{E}_I e^{ikz-\omega t}$ is incident normally on a flat uniform sheet of an excellent conductor $(\sigma \gg \omega)$ having thickness D. Assume that in space and in the conducting sheet $\mu = \epsilon = 1$, discuss the reflection an transmission of the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, correct to first order in $(\omega/\sigma)^{1/2}$, are:

$$\frac{E_R}{E_I} = \frac{-(1 - e^{-2\lambda})}{(1 - e^{-2\lambda}) + \gamma(1 + e^{-2\lambda})} \tag{1}$$

$$\frac{E_T}{E_I} = \frac{2\gamma e^{-\lambda}}{(1 - e^{-2\lambda}) + \gamma (1 + e^{-2\lambda})} \tag{2}$$

where

$$\gamma = \sqrt{\frac{2\omega}{\sigma}}(1-i) = \frac{\omega\delta}{c}(1-i) \tag{3}$$

$$\lambda = (1 - i)D/\delta \tag{4}$$

and $\delta = \sqrt{2/\omega\mu\sigma}$ is the skin depth.

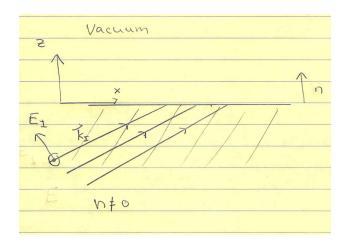
- (b) Verify that for zero thickness and infinite skin depth you obtain the proper limiting results.
- (c) **Optional:** Show that, except for sheets of very small thickness, the transmission coefficient is

$$T = \frac{8(\text{Re}\gamma)^2 e^{-2D/\delta}}{1 - 2e^{-2D/\delta}\cos(2D/\delta) + e^{-4D/\delta}}$$
 (5)

Sketch log T as a function of D/δ , assuming Re $\gamma = 10^{-2}$. Define "very small thickness".

Problem 2. Analysis of the Goos-Hänchen effect

A ribbon beam of in plane polarized radiation of wavelength λ is totally internally reflected at a plane boundary between a non-permeable (i.e. $\mu = 1$) dielectric media with index of refraction n and vacuum (see below). The critical angle for total internal reflection is θ_I^o , where $\sin \theta_I^o = 1/n$. First assume that the incident wave takes the form $\mathbf{E}(t, \mathbf{r}) = \mathbf{E}_I e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t}$ of a pure plane wave polarized in plane and study the transmitted and reflected waves.



(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric field takes the form:

$$\mathbf{E}_{2}(x,z) = \mathbf{E}_{2}e^{-\frac{\omega}{c}(\sqrt{n^{2}\sin\theta_{I}^{2}-1})z}e^{i\frac{\omega n\sin\theta_{I}}{c}x}$$
(6)

(b) Starting from the Maxwell equations, show that for $\theta_I > \theta_I^0$ the ratio of the reflected amplitude to the incident amplitude is a pure phase

$$\frac{E_R}{E_I} = e^{i\phi(\theta_I, \theta_I^o)} \tag{7}$$

and determine the phase angle. Thus the reflection coefficient $R = |E_R/E_I|^2 = 1$ However, phase has consequences.

(c) Show that for a monochromatic (i.e. constant $\omega = ck$) ribbon beam of radiation in the z direction with a transverse electric field amplitude, $E(x)e^{ik_zz-i\omega t}$, where E(x) is smooth and finite in the transverse extent (but many wavelengths broad), the lowest order approximation in terms of plane waves is

$$\mathbf{E}(x,z,t) = \epsilon \int \frac{d\kappa}{(2\pi)} A(\kappa) e^{i\kappa x + ikz - i\omega t}$$
(8)

where $k = \omega/c$. Thus, the finite beam consists of a sum plane waves with a small range of angles of incidence, centered around the geometrical optics value.

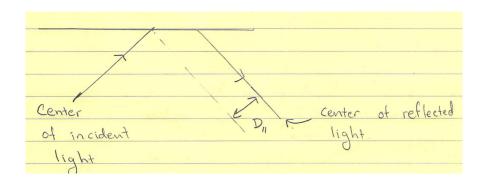
(d) Consider a reflected ribbon beam and show that for $\theta_I > \theta_I^o$ the electric field can be expressed approximately as

$$\boldsymbol{E}_{R} = \boldsymbol{\epsilon}_{R} E(x'' - \delta x) e^{i\boldsymbol{k}_{R} \cdot \boldsymbol{r} - i\omega t + i\phi(\theta_{I}, \theta_{I}^{o})}$$
(9)

where ϵ_R is a polarization vector, x'' is the coordinate perpendicular to the reflected wave vector \mathbf{k}_R , and the displacement $\delta x = -\frac{1}{k}\frac{d\phi}{d\theta_I}$ is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane polarized beam is

$$D_{\parallel} = \frac{\lambda}{\pi} \frac{\sin \theta_I}{\sqrt{\sin^2 \theta_I - \sin^2 \theta_I^o}} \frac{\sin^2 \theta_I^o}{\sin \theta_I^2 - \cos \theta_I^2 \sin^2 \theta_I^o}$$
(10)



Problem 3. Reflection of a Gaussian Wave Packet Off a Metal Surface:

In class we showed that the amplitude reflection coefficient from a good conductor ($\omega \ll \sigma$) for a plane wave of wavenumber $k = \omega/c$ is

$$\frac{H_R(k)}{H_I(k)} = 1 - \sqrt{\frac{2\mu\omega}{\sigma}} (1 - i) \simeq \left(1 - \sqrt{\frac{2\mu\omega}{\sigma}}\right) e^{i\phi(\omega)}, \qquad (11)$$

where the phase is for $\omega \ll \sigma$:

$$\phi(\omega) \simeq \sqrt{\frac{2\mu\omega}{\sigma}} \,. \tag{12}$$

Consider a Gaussian wave packet with average wave number k_o centered at z = -L at time t = -L/c which travels towards a metal plane located at z = 0 and reflects. Show that the time at which the center of the packet returns to z = -L is given by

$$t = \frac{L}{c} + \frac{\mu \delta_o}{2c} \tag{13}$$

where the time delay is due to the phase shift $d\phi(\omega_o)/d\omega$, and $\delta_o = \sqrt{2c/\sigma\mu k_o}$ is the skin depth.

Problem 4. Snell's law in a crystal

Consider light of frequency ω in vacuum incident upon a uniform dielectric material filling the space y > 0. The light is polarized in plane (as shown below) and has incident angle θ_1 . The dielectric material has uniform permittivity ϵ and $\mu = 1$.

(a) Derive Snell's law from the boundary conditions of electrodynamics.

Consider light propagating in a crystal with $\mu = 1$ and dielectric tensor ϵ_{ij} . Along the principal crystalline axes ϵ_{ij} is given by

$$\epsilon_{ij} = \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_3 \end{pmatrix} , \tag{14}$$

and thus, along the axes $D_i = \epsilon_i E_i$ (no sum over i).

(b) Starting directly from the Maxwell equations in the dielectric medium, show that the frequency and wave numbers of the plane wave solutions $\boldsymbol{E}(t,\boldsymbol{r}) = \boldsymbol{E}e^{i\boldsymbol{k}\cdot\boldsymbol{r}-i\omega t}$ in the crystal are related by

$$\det\left(k_i k_j - k^2 \delta_{ij} + \frac{\omega^2 \epsilon_i}{c^2} \delta_{ij}\right) = 0 \qquad \text{(no sum over } i\text{)}.$$

Now consider light of frequency ω in vacuum incident upon a dielectric crystal. The light has incident angle θ_1 , and propagates in the x-y plane, i.e. $k_z=0$. The incident light is also polarized in x-y plane, and the axes of the dielectric crystal are aligned with the x,y,z axes (see below). Only the y axis of the crystal has a slightly larger dielectric constant than the remaining two axes,

$$\epsilon_{ij} = \begin{pmatrix} \epsilon & 0 & 0 \\ 0 & \epsilon & (1+\delta) & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \tag{16}$$

with $\delta \ll 1$.

- (c) Determine angle of refraction (or $\sin \theta_2$) including the first order in δ correction to Snell's law.
- (d) Is the refracted angle smaller or larger than in the isotropic case? Explain physically. Does the angular dependence of your correction makes physical sense? Explain physically.
- (e) If the incident light is polarized along the z axis (out of the x-y plane), what is the deviation from Snell's law? Explain physically.

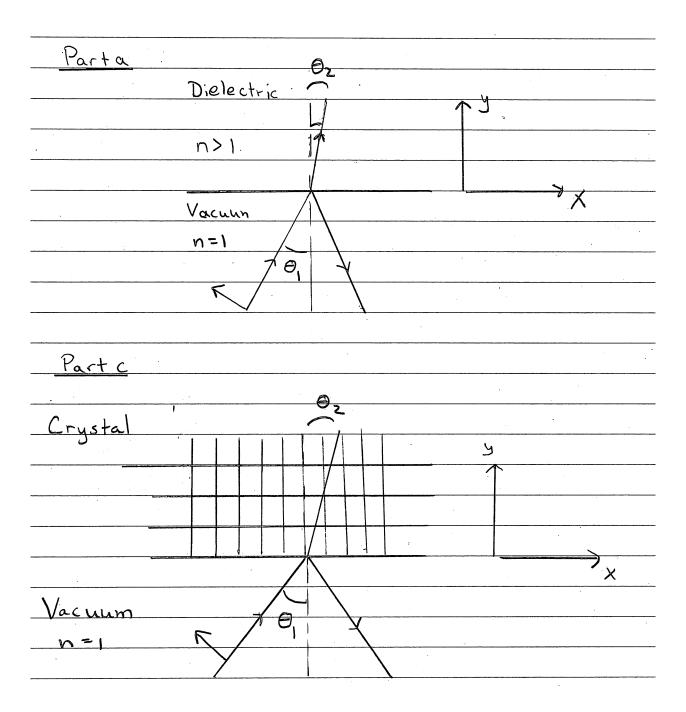


Figure 1: Snell's law geometry