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The analysis done in class shows that:
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Now we compute the fields
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e We note that under the change of variables
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the derivatives take the following form
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The last line should be understood as the indexed expression
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e We now compute E and B exploiting the derivatives in the radiation zone:
(a) We can neglect derivatives of 1/r
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(b) And we use
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Here we have neglected the derivative n which is suppressed by 1/ relative to the leading term.

e With this we have after a bit
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e While the E-field uses the same tricks
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Now using
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Since (V,, -J), is a total divergence, it does not contribute to the volume integral for a localized

current, and we find
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the part of 9;J transverse to n
e To see that the electric field is orthogonal to B we use that the transverse components of a vector V:
V-nn-V)=-nx(nxV) (21)

Leading this to
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