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The analysis done in class shows that:
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Now we compute the fields
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• We note that under the change of variables
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the derivatives take the following form
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The last line should be understood as the indexed expression(
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• We now compute E and B exploiting the derivatives in the radiation zone:
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Here we have neglected the derivative n which is suppressed by 1/r relative to the leading term.

• With this we have after a bit
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• While the E-field uses the same tricks
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to find
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Now using
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Since (∇ro · J)t is a total divergence, it does not contribute to the volume integral for a localized
current, and we find
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• To see that the electric field is orthogonal to B we use that the transverse components of a vector V :

V − n (n · V ) = −n× (n× V ) (21)

Leading this to
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