Functions of a Complex Variable
• A complex function takes in a complex number
the complex number
2 = x + iy = re^{i0}
$f(x_{y1}) = U(x_{y1}) + iV(x_{y1})$
Example 1
$f(z) = z^2 = r^2 e^{i20}$
$f(z) = z^2 = r^2 e^{i20}$
$f(z) = \frac{1}{2} \cdot \frac{1$

We are the map z^2 , which maps points the *x*, *y* plane to the *u*, *v* plane, $(x, y) \mapsto (u, v)$ The colored lines and points are just to show how these objects are transformed by the map $11/3$ 病 domain = quadrant $\sqrt{2}$ \times $f=1$ = upper half
plane image \vee we can examine which lines of const 4, V Similarly $V=1$ map to x, y り UF <u>domain = quadrant</u> -1 $U =$ $= 0$ image = upper \times h alf $U = 0$ $1 - -1$ $U = 1$ plane $V =$ \vee

Example 2 $e^{z} = e^{x+iy}$ = e^{x} (cosy + isiny) \vee $2\overline{N}$ i domain Strip from $0...2\overline{N}$ - Close
to ill $\frac{1}{2}$ \overline{O} \times image whole plane

Example 3 $f(x,y) = x^2 + y^2 = r^2$ domain Whole complex plain real line image all solid points are mapped here all x are mapped here Clearly this example is quite different from the first two. As we will see it is because the first two examples are holomorphic the contract of the contract of

Cauchy Riemann Equations	
Let df exist in a neighborhood of z_0	
else	call l

This is expressed in Several ways.
\n
$$
f'(z) = 0 + ib
$$

\n $f'(z) = \begin{cases} \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} - i \frac{\partial y}{\partial x} = \frac{\partial f}{\partial x} \\ \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} - i \frac{\partial v}{\partial y} = -i \frac{\partial f}{\partial y} \end{cases}$
\nall the \rightarrow $\begin{cases} \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} - i \frac{\partial v}{\partial y} = -i \frac{\partial f}{\partial y} \\ \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} - i \frac{\partial v}{\partial y} \end{cases}$
\n6 The Cauchy Riemann Equations are often
\n $(\frac{\partial}{\partial z}) = \frac{1}{2}(\frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y})$ and $(\frac{\partial}{\partial \overline{z}}) = \frac{1}{2}(\frac{\partial}{\partial x} - \frac{1}{2} \frac{\partial}{\partial y})$
\nNote $z = x + iy$ $\overline{z} = x - iy$
\n $\frac{\partial}{\partial z} (\overline{z}) = \frac{1}{2}(\frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y}) (x + iy) = 1$
\n6 And Similarly: $\frac{\partial \overline{z}}{\partial z} = 0$ $\frac{\partial z}{\partial \overline{z}} = 0$
\n $\frac{\partial y}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y}) \neq 0$
\n $\frac{\partial v}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y}) \neq 0$
\n $\frac{\partial v}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial v}{\partial x} + i \frac{\partial v}{\partial y}) \neq 0$
\n $\frac{\partial v}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial v}{\partial$

But

$$
\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial \overline{z}} (x + i v)
$$
\n
$$
\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial \overline{z}} (x + i v)
$$
\nThis is
\n
$$
\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$
\n
$$
\frac{\partial f}{\partial \overline{z}} = 0 \left(-\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$
\n
$$
\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$
\n
$$
\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
$$
\n
$$
\frac{f_{\text{on}}
$$
\n
$$
\frac{f_{\text{non}}
$$
\n<math display="block</math>

Holomorphy and Calculus	Complex derivatives obey
e E.g. if $f(x,y)$ and $g(x,y)$ are holomorphic	
then so is	$f(x,y) g(x,y)$
Proof :	
Proof :	$f(x,y) g(x,y)$
Proof :	$\frac{1}{2}$

Examples
\n $\oint (x,y) = x^2 + y^2$ is not holomorphic\n $= (x+iy)(x-iy)$ \n
\n $= 2\overline{z}$ \n
\n Then \n $\frac{\partial f}{\partial \overline{z}} = 2 \leftarrow$ this is not zero so the function is not holomorphic.\n
\n $\oint (x,y) = 2^2$ \n
\n Then \n $\left(\frac{\partial f}{\partial \overline{z}}\right) = 0$ \n $\left(\frac{\partial f}{\partial \overline{z}}\right) = \frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} = 2\overline{z}$ \n
\n So f is holomorphic\n $\frac{\partial s}{\partial z} = \frac{\partial s}{\partial z}$ \n
\n So f is holomorphic\n $\frac{\partial s}{\partial z} = \frac{\partial s}{\partial z}$ \n
\n Note: \n $\frac{z^2}{2} = (x^2 - y^2) + 2ixy$ \n
\n We g(x) $\frac{dy}{dz} = \frac{-x^2}{2} + 2ixy = 2\overline{z}$ \n
\n So f is holomorphic f(x), g(x) = 2\overline{z}
\n So f is holomorphic f(x), g(x) = 2\overline{z}
\n So g(x) $\frac{dy}{dx} = \frac{-x^2}{2x} + 2ixy = 2\overline{z}$ \n
\n So g(x) $\frac{dy}{dx} = \frac{-x^2}{2x} + 2ixy = 2\overline{z}$ \n
\n So g(x) $\frac{dy}{dx} = \frac{-x^2}{2x} + 2ixy = 2\overline{z}$ \n

The real and imaginary parts of the harmonic
\n**EXAMPLE 1** We have the same line of the harmonic
\n
$$
W_{an}
$$
 to show that (u is harmonic) is obey the plane
\n
$$
\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = 0
$$
\n
$$
\frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} = 0
$$
\n
$$
\frac{3}{3x}(\frac{3v}{3y}) + \frac{3}{3y}(\frac{3v}{3x}) = 0
$$
\n
$$
\frac{3}{3x}(\frac{3v}{3y}) + \frac{3}{3y}(\frac{3v}{3x}) = 0
$$
\n
$$
\frac{3}{3x^{2}} + \frac{3^{2}v}{3y^{2}} = 0
$$
\n
$$
\frac{3^{2}v}{3x^{2}} + \frac{3^{2}v}{3x^{2}} = 0
$$
\n
$$
\
$$

The nature of holomorphic maps
\n• See Handbook
\n• Given a displacement in the x, y plane
\nwe can find the corresponding displacement
\nin the y, place
\n
$$
\left(\begin{array}{c|c}\n\Delta u & \Delta u & \Delta u \\
\Delta v & \Delta v & \Delta u\n\end{array}\right) = \left(\begin{array}{c|c}\n\Delta u/3x & \Delta u/3y \\
\Delta v/3x & \Delta v/3y\n\end{array}\right) = \left(\begin{array}{c|c}\n\Delta u & \Delta u \\
\Delta v/3x & \Delta v/3y\n\end{array}\right) = \left(\begin{array}{c|c}\n\Delta u & \Delta u & \Delta u \\
\Delta u & \Delta u & \Delta u\n\end{array}\right)
$$
\nThere are given by df/dx
\n
$$
\frac{df}{dz} = \Delta + ib = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}
$$
\nor
\n
$$
\frac{df}{dz} = \frac{f}{\Delta x} + b^2 \quad \frac{f}{dx} + b^2 \quad \frac{f}{dx} + b^2 \quad \frac{f}{dx} + b^2 \quad \frac{f}{dx} + f\n\end{array}
$$
\nThus
\n
$$
\frac{f}{dx} = \left(\begin{array}{c|c}\n\Delta u & \Delta u & \Delta u \\
\Delta u & \Delta u & \Delta u\n\end{array}\right) = \left(\begin{array}{c|c}\n\Delta u & \Delta u & \Delta u \\
\Delta u & \Delta u & \Delta u\n\end{array}\right) = \left(\begin{array}{c|c}\n\Delta u & \Delta u & \Delta u \\
\Delta u & \Delta u & \Delta u\n\end{array}\right)
$$

The map z^2

 $\overline{\mathcal{A}}$ 3.5 $\mathbf{3}$ 2.5 \overline{c} $\,>$ 1.5 1 0.5 $\pmb{0}$ -3 -2 -1 \overline{c} $\mathsf 3$ $\pmb{0}$ $\mathbf{1}$ $\overline{\mathbf{4}}$ -4

 $\sf u$

Thus we see that the holomorphic map locally just rescales the displacements and
rotates the vectors (see picture) Halomorphic Maps preserve the angles
between lines, mapping right angles to
right angles etc.

Analytic Functions
A function 1s analytic in a neighborhood
of z ₀ if it is described by a
University convergent) power series
$f(z) = a_0 + a_1(z-2) + a_2(z-2)^2 + ... = a_n(z-a_0)^n$
Such a function is clearly holomorphic since
$\frac{\partial f}{\partial \overline{z}} = 0$
$\frac{df}{dz} = \sum na_n(z-2)^{n-1}$
$\frac{df}{dz} = \sum na_n(z-2)^{n-1}$
We will show the converse, i.e., that holomorphic fens are analytic
The most important series is the geometric series
$f(q) = 1 + z + z^2 + z^3 + ...$