Example 1 Simple Poles we will Show this! • $I = \int dx \frac{1}{(x^2+1)} = \int dz \frac{1}{(z+i)(z-i)} = T$ $(x^{2}+1) = (2+i)(2-i)$ The integrand $1/(z^2 + 1)$ is analytic here except at $z = \pm i$ Arc singlarity at z=iGeneral Then add the arc at infinity which gives nothing: Iare = fdz <u>1</u> ≤ (lengthe) (max of func) are z2+1 ≤ (deare) (on are) $< 2\pi R \longrightarrow 0$ $R^2 R \rightarrow \infty$ Now deform the contor to a small circle around Z=i: I line + I Arc = I small at i we did this integral circle at i we did this integral eatlier $\oint \frac{1}{(z+i)(z-i)} = \frac{1}{2i} \int dz \frac{1}{z-i} = \frac{1}{2i} 2\pi i = \pi$ circle π Ismall at z=i Es almost i on circle boundary Zti=Zi

Residues: This procedure gets formalized. If f has expansion at Zo of the form . 00 $f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$ n=-00 9 Then the <u>residue</u> is the coefficient of <u>I</u>. Thus, the residue of our function in Example() Res $\frac{1}{2=i^{2}} = \frac{1}{2i}$ $\frac{1}{2=i^{2}} = \frac{1}{2i}$ 2i = 2+i | 2=iAnd we have a formula: $\oint_{x} f(z) dz = 2\pi i \sum_{z_{a}} \operatorname{Res}_{z_{a}} f$ analytic, single Here f(z) is reacept for poles at some set of points {22. The integration is over a closed Contour deformable to a point enclosing the Ezas. In this case there are poles at Z=+i, -i. We closed closed the contour above, encircling the upper pole. The residue there is (21) and thus $\frac{T}{2} = 2\pi i \qquad = \pi$

A note on terminology
Suppose
$$f(z)$$
 has an expansion at z_0 of
the form
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + a_0 + a_1(z-z_0) + \dots$
 $f(z) = \frac{a_{-1}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)^2} + \frac{a_0}{(z-z_0)^2} + \frac{a_0}$

Example 2: Double Poles and Fourier Integrals
Consider
I(k) =
$$\int dx \ e^{tikx}$$
 watch the two!
I(k) = $\int dx \ e^{tikx}$ take $k < 0$ for example
 $(x^2 + 1)^2$ Twatch me!
Then $(x^2 + 1)^2 = (2 + i)(z - i)^2$. So
 $z = i$ $I = \int dz \ e^{ikz}$
Ine $\int (2z + i)^2 (z - i)^2$
Now since $k < 0$, we must
Close the contour below. Take:
 $z = iy$, then
Clockwise = Wrong way
around W $e^{ik(iy)} = e^{iky}$. So if $y < 0$
then $e^{-ky} \rightarrow 0$ (since $-k > 0$) while if $y > 0$, e^{-iky}
increases and the arc at infinity diverges. So we close
below, where $y < 0$:
 $T_{ine} = \int dz \ e^{ikz}$
 $(z+i)^2(z-i)^2$ M Uses Cauchy
 $then e^{-ky} = 0$ (z+i)^2(z-i)^2 M busile pole $Theorem$

Then the function near
$$2 = -i$$
 takes the form

$$\frac{e^{ikz}}{(2+i)^2(2-i)^2} = \frac{a_{-1}}{(2+i)^1} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)} + \frac{a_{-1}}{(2+i)^2}$$

$$\frac{e^{ikz}}{(2+i)^n} = 0 \quad \text{unless } n = -1$$

$$\int \frac{d_{-1}}{(2+i)^n} = 0 \quad \text{unless } n = -1$$

$$\int \frac{d_{-1}}{(2+i)^n} = 0 \quad \text{unless } n = -1$$

$$\int \frac{e^{ikz}}{(2+i)^n} = \frac{g(2)}{(2-i)^2} = \frac{g(2)}{(2-i)$$

So finally

$$T_{\text{time}} = -2\pi i \text{ Res} \qquad f$$

$$E_{z=-i}$$

$$T_{\text{because}} \quad \text{we circle the pole}$$
in a clockwise rather than counter - clockwise
fashion:

$$T_{\text{time}} = -2\pi i \left(-i\frac{e^{k}}{4}(k-1)\right)$$

$$T_{\text{time}} = \pi e^{k} \left(1-k\right)$$

$$T_{\text{time}} = \pi e^{k} \left(1-k\right)$$

Analytic Functions Take a power series $f(z) = a_0 + a_1 z + a_2 z^2 + \dots$ converges. This is known as absolute uniform convergence. In general, the n-th term (n-large) lan 1 r < 1 had better be less than unity or the successive terms in the expansion would get bigger and bigger The boundary of convergence is thus $\lim_{n \to \infty} |a_n| R^n = 1 \quad i.e \quad 1 = \lim_{n \to \infty} |a_n|^m$ I. will not prove it but there is a useful formula: I = lim [antI] if the limit exists R n-200 Ian Finis the Cauchy Ratio Test

Example
$$e^{z}$$
 converges in the entire complex plane
 $e^{z} = 1 + z + z^{z} + ...$
Then we have $R = \infty$ or $V_{R} = 0$ from these steps:
 $\frac{1}{R} = \lim_{n \to \infty} \frac{1}{(n!)^{V_{n}}} = \frac{1}{(n^{2}e^{n})^{V_{n}}} = \lim_{n \to \infty} \frac{e^{2}}{(n!)^{V_{n}}} = \frac{1}{(n^{2}e^{n})^{V_{n}}} =$

The Radius of Convergence and Singularites Let's look at $\frac{1}{1+2+2^2+\ldots}$ We showed that radius of convergence is R=1 i.e. the distance between the origin and the nearest Singularity. · Similarly, take 1/1-2 and expand near z=-1: $\frac{1}{1-z} = \frac{1}{2-z+1} = \frac{1}{2(1-z+1)} + \frac{z}{1-z} = 1$ $=\frac{1}{2}\left(1+\left(\frac{2+1}{2}\right)+\left(\frac{2+1}{2}\right)^{2}+\dots\right)$ These terms are getting successively smaller provided 12+11<2. Here 2 is the distance between the expansion point and the nearest singularity in the complex plane This is the general result: The radius of Art convergence is the distance between the Expansion point and the rearest singularity

in the complex plane.

Thus, take for example,

$$\frac{1}{2^{2}+3}$$
 and ask about its convergence

$$\frac{1}{2^{2}+3}$$
at $2=3a$ The series is

$$\frac{1}{2^{2}+1} = \frac{1}{10} - \frac{3}{10} (2-3)^{2} + \frac{13}{500} (2-3)^{2} + \frac{1}{10} = \frac{1}{10} - \frac{3}{500} (2-3)^{2} + \frac{1}{100} = \frac{1}$$

Parametrize the circle by
$$z'-z_{b} = Re^{i\theta} dz'=iRd\theta$$

Then, $f(\theta) = f(Re^{i\theta})$, and we find that a_{μ} are :
 $a_{\mu} = \bot \int_{0}^{2\pi} d\theta e^{-in\theta} f(\theta)$
 $2\pi R^{\mu} \int_{0}^{2\pi} We$ see that the a_{μ} are the fourier coefficients of $f(\theta)$
 $\leq \|f\|$ $\|f\| = maximum value of |f|$
 R^{μ} on the circle boundary
Take a_{0} a_{0} is the average of $f(\theta)$. This is clearly less than the maximum of $f(\theta)$
Thus the n-th term in the series scales as $See picture \downarrow$
 $\left[a_{\mu}(z-z_{0})^{\mu}\right] \leq \|f\| \left(\frac{|z-z_{0}|}{R}\right)^{\mu}$ with $\frac{|z-z_{0}|}{R} < \frac{1}{R}$
which clearly gets smaller and smaller geometrically
so that the series converges (compare to $\frac{1}{r(1-z)}$). So
the radius of convergence is at least R.
But if it were more than R the function would
be analytic outside of R, contradicting the assumption
that R is the Maximum circle contained in the
domain of analyticity U.