Example 1 Simple Poles
we will

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} d x \frac{1}{\left(x^{2}+1\right)}=\int_{\text {Line }}^{\infty} d z \frac{1}{(z+i)(z-i)}=\pi \\
& \left(x^{2}+1\right)=(z+i)(z-i)
\end{aligned}
$$

The integrand $1 /\left(z^{2}+1\right)$ is analytic here except at $z= \pm i$
Arc
a/lalytic here, except for the singularity

- Then add the are at infinity which gives nothing:

$$
\begin{aligned}
I_{\text {arc }}=\int_{\text {arc }}^{\infty} d z \frac{1}{z^{2}+1} & \leqslant\binom{\text { length }}{\text { of arc }}\binom{\max \text { of func }}{\text { on arc }} \\
& <\frac{2 \pi R}{R^{2}} \xrightarrow[R \rightarrow \infty]{ } 0
\end{aligned}
$$

- Now deform the contor to a small circle around $z=i$:

$$
\begin{aligned}
& I_{\text {line }}+I \overbrace{\text { Are }}^{0}=I_{\substack{\text { small } \\
\text { circle }}} \text { at } i \quad \oint_{\text {circle }}^{(z+i)(z-i)}=\frac{1}{2 i} \oint d z \frac{1}{z-i}=\frac{1}{2 i} 2 \pi i=\pi \\
& \left.I_{z}^{\text {small }} \begin{array}{l}
\text { at } z=i \\
i_{i s} \text { almost } i
\end{array}\right] \text { on circle boundary } z+i=2 i
\end{aligned}
$$

Residues:

- This procedure gets formalized. If f has expansion at z_{0} of the form:

$$
f(z)=\sum_{n=-\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

note negative powers here!
Then the residue is the coefficient of $\frac{1}{z-z_{0}}$.

- Thus, the residue of our function in Example (1) is

$$
\operatorname{Res}_{z=i} \frac{1}{(z-i)(z+i)}=\frac{1}{2 i} \quad 2 i=z+\left.i\right|_{z=i}
$$

And we have a formula:

$$
\frac{\oint_{\gamma} f(z) d z=2 \pi i \sum_{z_{a}} \operatorname{Res}_{z_{a}} f}{\text { analytic, }}
$$

- Here $f(z)$ is^except' for ^poles at some set of points $\left\{z z_{a}\right.$. The integration is over a closed contour deformable to a point enclosing the $\left\{z_{a}\right\}$.
- In this case there are poles at $z=+i,-i$. We closed closed the contour above, encircling the upper pole. The residue there is $(2 i)^{-1}$ and thus

$$
I=2 \pi i \quad \frac{1}{2 i}=\pi
$$

A note on terminology

Suppose $f(z)$ has an expansion at z_{0} of the form

$$
\begin{aligned}
f(z)= & \frac{a_{-2}}{\left(z-z_{0}\right)^{2}}+\frac{a_{-1}}{\left(z-z_{0}\right)}+a_{0}+a_{1}\left(z-z_{0}\right)+\ldots \\
& \int_{\begin{array}{c}
\text { double } \\
\text { pole }
\end{array}} \hat{\text { single pole }}_{\text {sing }}
\end{aligned}
$$

We say $f(z)$ has a double pole (or a pole of order two). The residue of $f(z)$ at z_{0} is the coefficient of the single pole, i.e.

$$
\operatorname{Res}_{z=z_{0}} t=a_{-1}
$$

Example 2: Double Poles and Fourier Integrals
Consider
watch the two!

Then $\left(x^{2}+1\right)^{2}=(z+i)^{2}(z-i)^{2}$. So
$z=i$

$$
I_{l i n e}=\int_{L} d z \frac{e^{i k z}}{(z+i)^{2}(z-i)^{2}}
$$

"clockwise = wrong way around II then $e^{-k y} \rightarrow 0$ (since $-k>0$), while if $y>0, e^{-k y}$ increases and the arc at infinty diverges. So we close below, where $y<0$:

- $I_{\text {line }}=\oint_{\substack{\text { are } \\ \text { aline }}} d z \frac{e^{i k z}}{(z+i)^{2}(z-i)^{2}}$

Uses Cauchy Theorem

- Then the function near $z=-i$ takes the form

$$
\frac{e^{i k z}}{(z+i)^{2}(z-i)^{2}}=\frac{a_{-2}}{(z+i)^{2}}+\frac{a_{-1}}{(z+i)}+a_{0}+a_{1}(z+i) \ldots
$$

F double pole single pole
We only care about the residue, a_{-1}, since

$$
\oint \frac{1}{(z+i)^{n}}=0 \text { unless } n=-1
$$

small
circle around'

$$
z=-i
$$

- Expanding near $z=-i$, the function in front of $1 /(z+i)^{2}$

$$
\begin{array}{ll}
\quad \frac{e^{i k z}}{(z-i)^{2}} \equiv g(z) & g(z)=g(-i)
\end{array}+g^{\prime}(-i)(z+i)
$$

$$
g(z)=\frac{e^{k}}{(2 i)^{2}}-i e^{k} \frac{(k-1)}{4}(z+i)+\ldots
$$

see next page

- Then:

$$
\frac{e^{i k z}}{(z+i)^{2}} \frac{e^{k}}{(z-i)^{2}}=\frac{e^{k}}{(2 i)^{2}(z+i)^{2}}-\frac{k-1)}{4} \frac{1}{(z+i)}+a_{0}+\ldots
$$

So finally

$$
I_{\text {line }}=-2 \pi i \operatorname{Res}_{z=-i} f
$$

Because we circle the pole in a clockwise rather than counter-clockwise fashion:

$$
\begin{aligned}
& I_{\text {line }}=-2 \pi i\left(-\frac{i e^{k}}{4}(k-1)\right) \\
& I_{\text {line }}=\pi e^{k} \frac{(1-k)}{2}
\end{aligned}
$$

Analytic Functions

- Take a power series

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots
$$

The radius of convergence is the largest R such that for all $r<R$ the series:

$$
\leftrightarrow \sum_{n}\left|a_{n}\right| r^{n}
$$

converges. This is known as absolute uniform convergence. In general, the n-th term (n-large)

$$
\left|a_{n}\right| r^{n}<1
$$

had better be less than unity or the successive terms in the expansion woulld get bigger and bigger The boundary of convergence is thus

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right| R^{n}=1 \quad \text { i,e } \quad \frac{1}{R}=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}
$$

I. will not prove it but there is a useful formula:
$\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ if the limit exists

- this the Cauchy Ratio Test

Example e^{z} converges in the entire complex plane

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots
$$

Then we have $R=\infty$ or $1 / R=0$ from these steps:

$$
\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{1}{(n!)^{1 / n}}=\frac{1}{\left(n^{n} e^{-n}\right)^{1 / n}}=\lim _{n \rightarrow \infty}\left(\frac{e}{n}\right)=0 .
$$

We used the stirling approximation for $n \rightarrow \infty$

$$
n!\simeq n^{n} e^{-n} \quad \text { or } \log n!=n \log n-n^{\text {try to }} \text { proveme }
$$

More generally the next correctionto the stirling approx is used $n!\simeq n^{n} e^{-n} \sqrt{2 \pi n}$ and is quite accurate even for modest n.

Proof of Stirling Approx:

$$
\begin{aligned}
\log n! & =\log (1)+\log (2)+\log (3)+\ldots \log (n) \\
& =\sum_{k=1}^{n} \log (k) \simeq \int_{1}^{n} d x \log (x) \\
& \simeq x \log (x)-\left.x\right|_{1} ^{n} \\
& \simeq n \log (n)-n+\text { order unity }
\end{aligned}
$$

So $n!\simeq n^{n} e^{-n}$

The Radius of Convergence and Singularites
Let's look at

$$
\frac{1}{1-z}=1+z+z^{2}+
$$

We showed that radius of convergence is $R=1$, i.e. the distance between the origin and the nearest singularity.

- Similarly, take $1 / 1-z$ and expand near $z=-1$:

$$
\begin{aligned}
\frac{1}{1-z} & =\frac{1}{2-z+1}=\frac{1}{2\left(1-\frac{z+1}{2}\right)} \\
& =\frac{1}{2}\left(1+\left(\frac{z+1}{2}\right)+\left(\frac{z+1}{2}\right)^{2}+\cdots\right)
\end{aligned}
$$

These terms are getting successively smaller provided $|z+1|<2$. Here 2 is the distance between the expansion point and the nearest singularity in the complex plane

* This is the general result: The radius of convergence is the distance between the expansion point and the rearest singularity in the complex plane.

Thus, take for example,
$\frac{1}{z^{2}+1}$, and ask about its convergence at $z=3$. The series is

$$
\frac{1}{z^{2}+1} \simeq \frac{1}{10}-\frac{3}{10}(z-3)+\frac{13}{500}(z-3)^{2}+\ldots
$$

The distance between
 the expansion point $(z=3)$ and the nearest singularity $(z= \pm i)$ is $R=\sqrt{3^{2}+1^{2}}=\sqrt{10}$

This is the radius of Convergence

Proof Let u be the region where the fun is analytic. in U

- Let R be largest disk ${ }^{\wedge}$ that can be drawn around z_{0}. From the cauchy theorem

$$
\begin{aligned}
& f_{1}(z)=\sum_{n} a_{n}\left(z-z_{0}\right)^{n} \\
& a_{n}=\frac{1}{2 \pi i} \oint \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)^{n+1}}
\end{aligned}
$$

Parametrize the circle by $z^{\prime}-z_{0}=R e^{i \theta} \quad d z^{\prime}=i R d \theta$
Then, $f(\theta) \equiv f\left(R e^{i \theta}\right)$, and we find that a_{n} are:

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi R^{n}} \int_{0}^{2 \pi} d \theta e^{-i n \theta} f(\theta) \\
& \leqslant \frac{\|f\|}{R^{n}} \quad \text { We see that the } a_{n} \text { are the fourier coefficients of } f(\theta) \\
& \text { Take } a_{0} \cdot a_{0} \text { is the average of } f(\theta) \text {. This is clearly less than the maximum of } f(\theta)
\end{aligned}
$$

- Thus the n-th term in the series scales as on previous page

$$
\left|a_{n}\left(z-z_{0}\right)^{n}\right|<\|f\|\left(\frac{\left|z-z_{0}\right|}{R}\right)^{n} \text { with } \frac{\left|z-z_{0}\right|<1}{R}
$$

which clearly gets smaller and smaller geometrically so that the series converges (compare to $1 /(1-z)$). So the radius of convergence is at least R.
But if it were more than R the function would be analytic outside of R, contradicting the assumption that R is the maximum circle contained in the domain of analyticity U.

