Analytic Continuation

① If an analytic function is zero on any line segment then it is zero everywhere in its domain of definition W:

. Think about it. An analytic function is Ő determined by a countable number of series coefficients Eanzy, while a line segment is a non-countable set of points. $f(z) = \sum a_n z^n$

So if a function is zero on a line segment, then all of its derivates are zero there. There are more zero-conditions than coefficients {a, }, leading to an=0

2) If two analytic functions agree on a line segment then they must agree in their common domain of definition UNV. Just Look at f-g (F(B)) and return to ()

(3) The function g defined on V (which agrees with f on a segment in UNV) is unique throughout V. To prove, just look at g,-g2 defined on V. It is zero an a segment. So g-g=0 throughout V by U.

g is known as the (unique) analytic continuation

of f to the set V.

$$F_{x-1}$$

$$\frac{1}{2} = \underbrace{1}_{(2-1)+1} \implies f_1(2) \equiv (1 - (2-1) + (2-1)^2 + \dots + 2^{-1}) \leq 1$$

$$f_1(2) \text{ has domain of definition } |z-1| \leq 1$$

$$f_1(2) \text{ has domain of definition } |z-1| \leq 1$$

$$f_2(2) = \sum_{n=1}^{\infty} a_n (z-i)^n$$
Then the only way $f_2(2)$ will agree with $f_1(2)$
is if the coefficients a_n are chosen to reproduce $1/2$

$$\underbrace{1}_{2-i+i} = \underbrace{1}_{2} \implies f_2(2) = \underbrace{1}_{i} - \underbrace{(2-i)}_{i} + \underbrace{(2-i)}_{i} + \dots + \underbrace{(2-i)}_{i} + \dots + \underbrace{(2-i)}_{i} + \underbrace{(2-i)}_{i} + \dots + \underbrace{(2-i)}_{i} + \underbrace{(2-i)}_{i} + \dots + \underbrace{(2-i)}_{i} + \underbrace{(2-i)}_{i$$

Suppose I just started with the file):

•
$$f_1(z)$$
 is a function defined
on the disk around $z=1$
• $f_2(z)$ is a function defined
on the disk around $z=1$
• $f_1(z)$ on the disk around $z=i$
The value of $f_1(z)$ on the
line, determines uniquely the pawseries coefficients at $z=\overline{i}$
giving rise to $f_2(z)$. We have therefore extendended
the domain of definition of $f_1(z)$ through this
process of demanding agreement in the overlapp
• Then, $f_2(z)$ could be used to define a
power series around $z=-1$, $f_3(z)$
• $f_2(z)$
• $f_2(z)$
• $f_2(z)$
• $f_3(z)=-1+(z+1)-(z+1)^2$
• $f_3(z)=-1+(z+1)-(z+1)^2$
• $f_3(z)=-1$ three
determed uniquely a function $f_3(z)$ defined
mear $z=-1$, by demanding that the
chain of functions $f_1(z)$, $f_2(z)$, $f_3(z)$ agree
in their overlap regions. This is analytic continuation

along the arc
$$\mathcal{X}$$
 (see figure above).
The way we have done this it is clear
that $f_1(z)$, $f_2(z)$, $f_3(z)$ are just representations
of the same analytic function. $1/2$. We have
analytically continued $f_1(z)$ along an arc \mathcal{X}

$$I(z) = \int_{0}^{\infty} e^{-zt} dt$$

Ex

This defines a function of z for Rez70,
 Much the way f(z) defined a function on
 the disk in the previous example.

Should you be worried about using the 1/2 result
 for Rez negative? No you shouldn't. 1/2 agrees
 with I(2) for Rezzo. Specifically:

where I(z) is not defined The value at the point B is then determined (uniquely) by this series. This power series must return 1 ; to be in agreement with ILZ) for Rezo

We can continue the process along any path :

The logarithm

$$log Z = log re^{i\theta}$$

$$= log r + i\theta$$
But Θ is not determined precisely since we can
always add 2π to it. We could define
the principal branch of the log $\equiv log(z)$
note $P \log(z) = log r + i\theta - \pi < \theta \le \pi$
capital letter
This is fine, but then our function is
not continuous across the negative axis and
is therefore not analytic there
But not here
More generally define the logarithm along a path 8:
 $log_{\chi}(z) = \int_{1}^{2} dz' = dz = dr + id\theta$
 $= log r + i \Delta \theta \leftarrow - Change in \theta_{F} - \theta_{i}$

Then for the point
$$Z_A$$
 (reached by path Y_1)
 $I_{A} = I_{A} = I_{A}$ (reached by path Y_1)
 $I_{A} = I_{A} = I$

The log and analytic continuation
We can equivalently define the log through
analytic continuation along an arc (see figure!)
The figure is given on the next page study til
We start at point A on the real axis. We demand
it equals
$$\log \chi_A$$
. The power series on the real axis:
 $\log (\chi) = \log (1 + (\chi - 1))$
 $= (\chi - 1) - (\chi - 1)^2 + (\chi - 1)^3 + \dots$
 $\chi_A = \frac{1}{3}$
Replacing χ with χ gives a function defined
on the disc which returns (see figure)
 $\log \chi = \log r + i\theta$ $-\pi c \theta < \pi \gamma$
 χ χ χ χ in order to agree $\Theta \log \chi_A$ on the
real axis.
The next disc on the blue arc gives (to agree with
the first disc in overlapp region)
 $\log \chi = \log r + i\theta$ with $\pi < \theta < 3\pi$
Finally, we reach point B and the log χ defined
through this process of analytic continuation on the
 $arc \chi$ gives without ambiguity
 $\log \chi = \log r + i(\pi + \pi/6)$
Similarly for χ_A , the analytic continuation gives
 $\log \chi_A = \log r - i(\pi - \pi/6)$

Analytic continuation of the logarithm along two paths from A to B, γ_1 and γ_2 . The first analytic continuation returns $\log_{\gamma_1}(z_B) = \log(r_B) + i(\pi + \frac{\pi}{6})$. The second returns $\log_{\gamma_2}(z_B) = \log(r_B) + i(-\pi + \frac{\pi}{6})$

To keep apart the possible values of the logarithm, we draw a conventional line from the singularity to - 00 known as a cut

The Power Function
Given the logy (2) we define

$$Z^{\alpha} = e^{\alpha \log(2)} = r^{\alpha} e^{i\alpha \Theta_{\gamma}} e^{-\alpha \log(2)} e^{\alpha \log(2)}$$

The power function is defined by a starting
point and path. If two paths wind around the
origin they will give different answers
Take $\sqrt{2} = S_{\gamma}(2) \leftarrow$ here we notate the
path.
Usually the path is not notated, and it is
understood that the path avoids a conventional
branch cut, e.g.:
 $\sqrt{2}_{D} = \sqrt{r} e^{i\Theta_{D}/2} = \sqrt{r} (-i)^{\alpha}$
Cut $\sqrt{2}_{C} e^{i\Theta_{D}/2} = \sqrt{r} e^{i\Theta_{D}/2} = \sqrt{r} (-i)^{\alpha}$
But for $\sqrt{2}_{E} = \sqrt{r} e^{i\Theta_{E}/2} = \sqrt{r} e^{-i\Theta_{D}/2} = \sqrt{r} (-i)^{\alpha}$
Here we should probably notate the path, $\Theta_{E} = 3\pi/2$