Analytic Continuation
(1) If an analytic function is zero on any line segment, then it is zero everywhere in its domain of definition U :

- Think about it. An analytic function is determined by a countable number of series coefficients $\left\{a_{n}\right\}$, while a line segment is a non-countable set of points.

$$
f(z)=\sum_{n} a_{n} z^{n}
$$

So if a function is zero on a line segment, then all of its derivates are zero there. There are more zero-conditions than coefficients $\left\{a_{n}\right\}$, leading to $a_{n}=0$
(2) If two analytic functions agree on a line segment then they must agree everywhere in their common domain of definition $u \cap v$. Just Loot at $f-g$ u on $u \cap v$ (with f defined and return to (1)
(3) The function g defined on V (which agrees with f on a segment in $U \cap V$) is unique throughout V. To prove, just look at $g_{1}-g_{2}$ defined on V. It is zero an a segment. So $g_{1}-g_{2}=0$ throughout V by (1).
g is known as the (unique') analytic continuation
of f to the set V.

Ex 1

$$
\frac{1}{z}=\frac{1}{(z-1)+1} \Rightarrow f_{1}(z) \equiv 1-(z-1)+(z-1)^{2}+\ldots
$$

converges for $|z-1|<1$

- $f_{1}(z)$ has domain of definition $|z-1|<1$.

Suppose I had another function analytic at $z=i$

$$
f_{2}(z)=\sum_{n} a_{n}(z-i)^{n}
$$

Then the only way $f_{2}(z)$ will agree with $f_{1}(z)$ is if the coefficients a_{n} are chosen to reproduce $1 / z$

$$
\frac{1}{z-i+i}=\frac{1}{z} \Rightarrow f_{2}(z)=\frac{1}{i}-\frac{(z-i)}{i^{2}}+\frac{(z-i)}{i^{3}}+\cdots
$$

- Then $f_{2}(z)$ is defined for $|z-i|<1$.

The picture is the following

Suppose I just started with the $f_{1}(z)$:

- $f_{1}(z)$ is a function defined on the disk around $z=1$
- $f_{2}(z)$ is a function defined on the disk around $z=i$

The value of $f_{1}(z)$ on the line, determines uniquely the pow-series coefficients at $z=i$ giving rise to $f_{2}(z)$. We have therefore extenderded the domain of definition of $f_{1}(z)$ through this process of demanding agreement in the overlapp

- Then, $f_{2}(z)$ could be used to define a power series around $z=-1, f_{3}(z)$

$$
\begin{aligned}
& \frac{1}{z}=\frac{1}{z+1-1} \Rightarrow \\
& f_{3}(z) \equiv-1+(z+1)-(z+1)^{2} \\
& +\ldots
\end{aligned}
$$

- So from $f_{1}(z)$ defined at $z=1$, I have determed uniquely a function $f_{3}(z)$ ' defined near $z=-1$, by demanding that the chain of functions $f_{1}(z), f_{2}(z), f_{3}(z)$ agree in their overlap regions. This is analytic continuation
along the arc γ (see figure above).
The way we have done this it is clear that $f_{1}(z), f_{2}(z), f_{3}(z)$ are just representations of the same analytic function $1 / z$. We have analytically continued $f_{1}(z)$ along an arc γ

Ex 2

$$
I(z) \equiv \int_{0}^{\infty} e^{-z t} d t
$$

- This defines a function of z for $\operatorname{Re} z>0$, Much the way $f_{1}(z)$ defined a function on the disk in the previous example.
- Doing the integral

$$
I_{0}(z)=\frac{1}{z} \longleftarrow \text { this defines an analytic }
$$

- Should you be worried about using the $1 / z$ result for Rez negative? No you shouldn't. I/z agrees with $I(z)$ for $\operatorname{Re} z>0$. Specifically:

- I(z) determines a series series at $z=i$, by uniquely fixing the coefficients of the $z=i$ power series from the $\operatorname{Re} z>0$ results where $I(z)$ is defined.
where $I(z)$ is not defined
- The value at the point B^{\wedge} is then determined (uniquely) by this series. This power series must return $\frac{1}{z_{B}}$, to be in agreement with $I(z)$ for $\operatorname{Re} z>0$

We can continue the process along any path:

The power series $I_{2}(z)$ must return $Y_{Z_{c}}$ in order that it agrees with $I_{1}(z)=1 / z$ in their overlap region

- The process is repeated -- The power series $I_{n}\left(z_{D}\right)$ returns $1 / z_{D}$

The Logarithm

$$
\begin{aligned}
\log z & =\log r e^{i \theta} \\
& =\log r+i \theta
\end{aligned}
$$

- But θ is not determined precisely since we can always add 2π to it. We could define the principal branch of the $\log \equiv \log (z)$

$$
\underset{\substack{\text { note } \\ \text { capitol letter }}}{\log (z)=\log r+i \theta \quad-\pi<\theta \leq \pi}
$$

6 This is fine, but then our function is not continuow across the negative axis and is therefore not analytic there

- More generally define the logarithm along a path γ :

$$
\begin{aligned}
& \log _{\gamma}(z)=\int_{1}^{z} \frac{d z^{\prime}}{z^{\prime}} \\
&=\log r+i \Delta \theta \leftarrow \frac{d z}{z}=\frac{d r}{r}+i d \theta \\
&
\end{aligned}
$$

Then for the point z_{A} (reached by path γ_{1})

$$
\log _{\gamma,} z_{A}=\log r+i(\pi+\pi / 6)
$$

While for the point z_{A} (reached by path γ_{2})

$$
\log _{r_{2}} z_{A}=\log r-i(\pi-\pi / 6)
$$

The two logarithms differ by 2π since the combined path winds around the arigin once. Similarly take the path γ_{3}

Then

$$
\log _{\gamma_{3}}(z)=\log r+i(3 \pi+\pi / 6)
$$

The \log and analytic continuation
We can equivalently define the log through analytic continuation along an arc (See figure!)
The figure is given on the next page: study it!
We start at point A on the real axis. We demand it equals $\log x_{A}$. The power series on the real axis:

$$
\begin{aligned}
\log (x) & =\log (1+(x-1)) \\
& =(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}+\cdots
\end{aligned}
$$

Replacing x with z gives a function defined on the disc which returns (see figure)

$$
\log z=\log r+i \theta \quad-\frac{\pi}{12}<\theta<\pi / 12
$$

without ambiguity in order to agree $(1) \log x_{A}$ on the
real axis.
The next disc on the blue are gives (to agree with the first disc in overlapp region)

$$
\log z=\log r+i \theta \quad \text { with } \quad \frac{\pi}{12}<\theta<\frac{3 \pi}{12}
$$

Finally, we reach point B and the $\log z$ defined through this process of analytic continuation on the $\operatorname{arc} \gamma_{1}$ gives without ambiguity

$$
\log _{\gamma_{1}} z_{B}=\log r+i(\pi+\pi / 6)
$$

(2imilarly for γ_{2}, the analytic continuation gives

$$
\log _{\gamma_{2}} z_{B}=\log r-i(\pi-\pi / 6)
$$

Analytic continuation of the logarithm along two paths from A to B, γ_{1} and γ_{2}. The first analytic continuation returns $\log _{\gamma_{1}}\left(z_{B}\right)=\log \left(r_{B}\right)+i\left(\pi+\frac{\pi}{6}\right)$. The second returns $\log _{\gamma_{2}}\left(z_{B}\right)=\log \left(r_{B}\right)+i\left(-\pi+\frac{\pi}{6}\right)$

To keep apart the possible values of the logarithm, we draw a conventional line from the singularity to $-\infty$ known as a cut

Now any two curves which do not cross the cut, have not when taken together encircled the origin.

They therefore give the same analytic continuation

$$
\log _{\gamma_{1}}\left(z_{B}\right)=\log _{\gamma_{2}}\left(z_{B}\right)=\log r-i(\pi-\pi / 6) .
$$

The cut is convention:

γ_{1} and γ_{2} will give the same as above

$$
L \gamma_{1}=L \gamma_{2}=\log -i(\pi-\pi / 6)
$$

They will differ from γ_{3}.
The fact that γ_{1} and γ_{2} cross the cut, and γ_{3} doesn't means they have together $\left(\gamma_{3}, \gamma_{1}\right)$ encircled the origin once Here I mean the close path (g3-g1) or (g3-g2)

$$
L_{\gamma_{3}}=\log r+i(\pi+\pi / 6)
$$

The Power Function

Given the $\log _{\gamma}(z)$ we define

$$
z^{\alpha}=e^{\alpha \log _{\gamma}(z)}=r^{\alpha} e^{i \alpha_{k} \sigma_{\gamma} \alpha_{\text {angle depends }}^{\text {on }} \text { path }}
$$

The power function is defined by a starting point and path. If two paths wind around the origin they will give different answers

Take $\sqrt{z} \equiv S_{\gamma}(z) \leftarrow$ here we notate the path.
Usually the path is not notated, and it is understood that the path avoids a conventional branch cut, e.g.:

$$
\begin{aligned}
& \sqrt{z_{C}}=\sqrt{r} e^{i \theta_{C / 2}}=\sqrt{r} i \\
& {\sqrt{z_{D}}}=\sqrt{r} e^{-i \theta_{D}^{/ 2}}=\sqrt{r}(-i) \\
& \text { i.e. } \theta_{C}=\pi \quad \theta_{D}=-\pi
\end{aligned}
$$

But for $\sqrt{z}=\sqrt{r} e^{i \theta_{E} / 2}=\sqrt{r} e^{i 3 \pi / 2}=\sqrt{r}(-1) e^{i \pi / 2}$

$$
\uparrow \quad=\sqrt{r}(-i)
$$

Here we should probably notate the path, $\Theta_{E}=3 \pi / 2$

$$
\sqrt{z_{E}} \equiv S_{\gamma_{3}}(z)
$$

