Equivalent Representations
Given a matrix representation $D(g)$ we can find an equivalent representation by a similarity transformation

$$
D(g)=S^{-1} D(g) S \text { or } S^{-1} O_{g} S=-\frac{-g}{}
$$

Then $D(g)$ is also a matrix rep

$$
\begin{aligned}
\underline{D}\left(g_{1}\right) \underline{D}\left(g_{2}\right) & =S^{-1} D\left(g_{1}\right) S S^{1} D\left(g_{2}\right) S \\
& =S^{-1} D\left(g_{1}\right) D\left(g_{2}\right) S \\
& =S^{-1} D\left(g_{1} g_{2}\right) S=D\left(g_{1} g_{2}\right)
\end{aligned}
$$

The trace of the matrix is known as the "character of the representation" with symbol x

$$
x(g) \equiv \operatorname{Tr} D(g)
$$

Note the trace is or charachter is independent of any similarity transform

Reducible Representations
A representation of the group is completely reducable if through a similarity transformation it can be brought to black diagonal form for all $D(g)$. of the representation
i.e. if

$$
D(g)=(1 / 1
$$

Then by change of basis

$$
\underline{D}(g)=S D(g) S^{-1}
$$

The new matrix is block diagonalized

$$
\underline{D}(g)=\left(\begin{array}{c:c}
D^{(1)} /: & C \\
\hdashline 0 & D^{(2)}
\end{array}\right) \equiv D^{(1)} \oplus D^{(2)}(g)
$$

- If a representation can not be block diagonalized it is irreducable

Finding the irreducuble representations, and the decomposition, e.g. $\quad D(g)=D^{\prime \prime \prime}(g) \oplus D^{(2)}(g)^{\prime}$ is our chief task!

- A general reducable rep can be decomposed

$$
D(g)=D^{(1)} \oplus D^{(1)} \oplus D^{(2)} \oplus D^{(2)} \oplus D^{(2)} \oplus \ldots
$$

$$
=2 D^{(1)}(\pm) 3 D^{(2)} \oplus \ldots \equiv \sum_{1} a_{i} D^{(i)} \text { Formal }
$$

- The trace of this matrix is

$$
x(g)=\sum_{i} a_{i} x^{(i)}(g)
$$

trace of full matrix
trace of the irreducable reps matrices

Normally if I have a vector in vector space \mathbb{V}

$$
|v\rangle=v^{a}\left|e_{a}\right\rangle
$$

Then the action of the group operations mixes the components of the vector

$$
V^{a} \vec{g} D_{b}^{a}(g) V^{a}
$$

- The reduction separates the vector space V into direct suth $\mathbb{V}=\mathbb{Y}_{1} \oplus \mathbb{V}_{2}$. Each
vector $|\vec{v}\rangle$ can be written

$$
|\stackrel{\rightharpoonup}{v}\rangle=|\stackrel{\rightharpoonup}{v}\rangle+\left|\stackrel{\rightharpoonup}{v}_{2}\right\rangle \quad\left|v_{1}\right\rangle \in \mathbb{V}_{1} \text { and }\left|v_{2}\right\rangle \in \mathbb{V}_{2}
$$

- and the components of $\left|\vec{V}_{1}\right\rangle$ do not mix with $\left|\vec{v}_{2}\right\rangle$ under the with each other bender the action of the group (though the components of $\left|\vec{V}_{1}\right\rangle$ mix amongst itsself).

The vector space W_{1} and \mathbb{W}_{2} constitute invariant subspaces, ie. the action of the group on a vector in $\mathbb{V}_{\text {, }}$ returns a vector in \mathbb{W}

$$
\begin{aligned}
& v_{1}^{a} \rightarrow D^{(1) a}{ }_{b} v_{1}^{b} \\
& v_{2}^{(a)} \rightarrow D_{b}^{(2) a} v_{2}^{b}
\end{aligned}
$$

Example of a reducable rep. Circular Polorization

Consider the set of 2×2 matrices representing the rotations around the z-axis:

$$
\binom{\cos \theta-\sin \theta}{\sin \theta \cos \theta}=D\left(R_{\theta}\right) \quad R_{\theta} \vec{v}^{\imath} \otimes \prod^{\vec{v}}
$$

This is a group (an abelian group)

$$
R_{\theta} R_{\theta^{\prime}}=R_{\theta+\theta^{\prime}}
$$

It is a continuous group the number of elements is not fixed). Consider a change of basis of $D\left(R_{\theta}\right)$

$$
\begin{aligned}
& \vec{e}_{ \pm} \equiv \frac{\vec{e}_{x} \pm i \vec{e}_{y}}{\sqrt{2}} \\
& v_{ \pm} \equiv v_{x} \frac{-i v_{y}}{\sqrt{2}}=\frac{|\vec{v}|}{\sqrt{2}}\left(\cos \theta_{v} \pm i \sin \theta_{v}\right)=\frac{|\vec{v}|}{\sqrt{2}} e^{i \theta_{v}}
\end{aligned}
$$

- So under rotation $\theta_{v} \rightarrow \Theta_{v}+\theta$ and thus

$$
\begin{aligned}
& V_{ \pm} \vec{R}_{\theta}|V| e^{i\left(\theta_{v}+\theta\right)}=e^{i \theta} v_{+} \\
& V_{-}^{*} \vec{R}_{\theta}|v| e^{i\left(\theta_{v}+\theta\right)}=e^{-i \theta} v_{-}
\end{aligned}
$$

Thus in our new basis we have the transformation

$$
\binom{\underline{V}_{+}}{\underline{V}_{-}}=\left(\begin{array}{c:c}
e^{i \theta} & 0 \\
\hdashline 0 & e^{-i \theta}
\end{array}\right)\binom{V_{+}}{v_{-}}
$$

$V_{+}, V_{\text {- }}$ are known as the spherical components $\left[{ }^{+}\right.$of a vector \vec{v}. They have the advantage over v^{x}, v^{y}, They transform as an irreducable representation under rotations.

- Linder rotation one linearly polarization becomes another

However one circulary polarized state just picks up a phase under rotations

Some Theorems $\frac{\text { Without Proof }}{\text { inequivalent }}$
(1) The number of "irreducable representations and there dimensions is very limitted:

Let $D^{(\mu)}(g)$ label the irreps with

$$
\mu=1,2, \ldots N_{\text {reps }}
$$

of dimension $n_{\mu} \quad\left(D^{(\mu)}\right.$ is a $n_{\mu} \times n_{\mu}$ matrix)
Then

$$
\sum_{\mu=1}^{\sum_{\mu}^{\text {Nreps }} n^{2}=\left.n_{G}\right|^{\text {order of group }}=6 \text { for } D_{3}, 3 \text { for } Z_{3}}
$$

We will later prove that identit, alternating, and matrix reps are the ally irreps of D_{3}. Thus

$$
\prod_{\mu}=2 \quad 1^{2}+1^{2}+2^{2}=6
$$

(2) Schur's Lemma I

Let $D(g)$ be an irrep of dimension $n_{\mu} \times n_{\mu}$.
Let A be a square matrix which commutes with $D^{(m)}(g)$ for all $g \in G$

$$
\left[A, D^{(\mu)}(g)\right]=0
$$

Then either $A=0$ or $A=\lambda$ II
Proof See Hammermesh (3.14)
(3) Schurls Lemmal 2

If $D^{(1)}$ and $D^{(2)}$ are two inequivalent reps of dimensions $\eta_{(1)}$ and $\eta_{(2)}$ respectively (can be different or same)
Then if a matrix $A^{\prime \prime}$ intertwines" " $D^{(1)}$ and $D(2)$ meaning

$$
\begin{aligned}
& \begin{aligned}
& D^{(1)}(g) A=A D^{(2)}(g) \quad\left(D^{(1)}\right)(A) \\
&=(A)\left(D^{(2)}\right)
\end{aligned} \\
& \text { Zero. }
\end{aligned}
$$

Then A is zero.
(for a finite, or compact group) Any matrix representation is equivalent ta a unitary representation

A matrix is unitary if $D^{+}=D^{-1} \quad D^{+} D=\mathbb{1}$ Then a rep is unitary when

$$
D_{a b}\left(g^{-1}\right)=\left(D^{-1}(g)\right)_{a b}=\left(D^{+}\right)_{a b}=\left(D^{*}\right)_{b a}
$$

The Great Orthogonality Theorem Without Proof

- Let the group have irreps $D^{(\mu)}(g)$ with $(\mu)=1 \ldots N_{\text {reps }}$ of dimension $n_{\mu} \times n_{\mu}$
- Then the group averaged matrix elements are maximally orthogonal

$$
\frac{1}{n_{G}} \sum_{g} D_{a b}^{(\mu)}(g) D_{d c}^{(\nu)}\left(g^{-1}\right)=\frac{1}{n_{\mu}} \delta_{\mu v} \delta_{a c} \delta_{b d}
$$

Or since D is equalent to a unitary rep

$$
\frac{1}{h_{6}} \sum_{g} D_{a b}^{(\mu)}(g)\left(D_{c d}^{(\nu)}(g)\right)^{*}=\frac{1}{h_{\mu}} \delta_{\mu \gamma} \delta_{a c} \delta_{b d}
$$

- We can phrase this like this. Consider "vectors" in the vector space of group operators. The notation is

$$
\hat{v}=\sum_{i=1}^{n_{6}} v\left(g_{i}\right) \hat{g}_{i}=\sum_{i} v_{i} \hat{g}_{i}=\sum_{g} v(g) \hat{g}
$$

- We can add and subtract operators and take a "group" inner product

$$
\langle\hat{v}, \hat{w}\rangle=\sum_{i=1}^{n_{6}} v_{i}^{*} w_{i}=\sum_{g} v^{*}(g) w(g)
$$

Then define the "vectors" in this space of operators

$$
\frac{\hat{e}_{a b}^{(\mu)} \equiv\left(\left.\frac{n_{\mu}}{n_{6}} \sum_{g} D_{a b}^{*(\mu)}(g) \hat{g} \right\rvert\,\right.}{\hat{R}}
$$

n_{μ} / n_{6} inserted for later convenience
These vectors are orthogonal

$$
\left\langle\hat{e}_{a b}^{(\mu)}, \hat{e}_{c d}^{(v)}\right\rangle=\frac{n \mu}{n}_{n_{6}} \delta_{\mu v} \delta_{a c} \delta_{b d}
$$

Thus we have

$$
\sum_{\mu=1}^{\text {Nreps }} n^{2}
$$

orthogonal vectors in a "vector space" of dimension n_{G} we must have

$$
\sum_{\mu=1}^{N_{\text {reps }}} n_{\mu}^{2} \leqslant n_{G}
$$

- In fact $\sum n_{\mu}^{2}=n_{G}$ and thus the vectors

$$
\begin{aligned}
& A(\mu) \\
& e_{a b}
\end{aligned}
$$

Form a camplete orthogonal basis for the group algebra (ie, the group vector space)!

Functions of Definite Symmetry
Start with a function f. By acting on f with the group operator we get new functions

$$
f, O_{r_{1}} f, O_{r_{2}} f, O_{5_{0}} f, O_{s_{1}} f, O_{s_{2}} f
$$

Then any function in the span of these functions is represented by the "vector", $\hat{c}=c_{i} \hat{g}_{1}$

$$
\begin{aligned}
O_{\hat{c}} & =\sum_{i} c_{i} \hat{O}_{i}=\sum_{g} c(g) \hat{O}_{g} \\
\hat{O}_{\hat{i}} f & =\sum_{\text {numbers }} c_{i} \hat{O}_{i} f \\
& =\sum_{i} c_{i} f_{i} \leftarrow a \text { function in the span }
\end{aligned}
$$

- Instead of using the basis

$$
f_{i} \equiv \hat{0}_{i} f
$$

We will use

$$
f_{a b}^{(\mu)}=\hat{e}_{a b}^{(\mu)} f \equiv \frac{n_{\mu}}{n_{6}} \sum_{i}\left(D_{a b}^{(\mu)}\left(g_{i}\right)\right) \hat{O}_{g_{i}} f
$$

They have the same dimensionality

The vector space $=$ linear span of six functions

- Take the identity rep $\quad n_{\mu}=1 \quad D_{\text {II }}^{(\mu)}(g)=1$

$$
f_{\|}^{(1)}=\frac{1}{n_{G}} \sum_{g} O_{g} f
$$

$f_{11}^{(1)}=\frac{1}{6} \sum_{i} f_{i} \leftarrow$ we looked this earlier $f_{11}^{(1)}=f_{s}$
This is invariant under the group ops

$$
0_{y} f_{11}^{(\mu)}=f_{11}^{(m)}
$$

- Similarly boo at the alternating reps

$$
f_{A}=f_{11}^{(2)}=\frac{1}{6}\left(f+O_{r_{1}} f+O_{r_{2}} f-O_{s_{0}} f-O_{s_{1}} f-O_{s_{2}} f\right)
$$

Then $\stackrel{\text { this }}{ }$ is, up to a sign, invariant:

$$
O_{g} f_{11}^{(2)}= \pm f_{11}^{(2)}
$$

Where + is for $O_{r_{0}}, O_{r_{1}}, O_{r_{2}}$ and - is for $O_{s_{0}} ; O_{s_{1}} O_{s_{2}}$
These are shown on the slides

$f_{S}(x) \equiv f_{11}^{(1)}(x)$

$$
f_{A}(x) \equiv f_{11}^{(2)}
$$

- Now look at $f_{11}^{(.3)}$ and $f_{21}^{(3)}$

$$
\begin{aligned}
& f_{11}^{(3)}= \frac{n}{n}{ }_{G}(3) \\
& g \\
&\left(D_{11}^{(3)}(g)\right)^{*} O_{g} f \\
& f_{11}^{(3)}= \frac{2}{6}\left(f-\frac{1}{2} O_{r_{1}} f-\frac{1}{2} O_{r_{2}} f+O_{s} f\right. \\
&\left.-1 / 2 O_{s_{1}} f-1 / 2 O_{s_{2}} f\right)
\end{aligned}
$$

Where we read of the blue matrix elements from the table on the next page. Similarly

$$
\left(f_{21}^{(3)}\right)=\frac{2}{6}\left(\frac{\sqrt{3}}{2} O_{r_{1}} f-\frac{\sqrt{3}}{2} O_{r_{2}} f+\frac{\sqrt{3}}{2} O_{s_{1}} f-\frac{\sqrt{3}}{2} O_{s_{2}} f\right)
$$

- We also construct

$$
f_{12}^{(\mu)} \text { and } f_{22}^{(\mu)}
$$

- The functions

$$
f_{a 1}^{(M)}=\left\{\begin{array}{ll}
f_{11}^{(M)} & f_{21}^{(M)}
\end{array}\right\}
$$

Are partners in an irreducible rep $\mu=3$. They span an invariant subspace in the span of the six original functions $\left\{f, O_{r_{1}} f, O_{r_{2}} f, O_{s_{0}} f, O_{s_{1}} f, O_{s_{2}} f\right\}$

- Similarly $f_{a_{2}}^{(\mu)}=\left\{f_{12}^{(\mu)}, f_{22}^{(\mu)}\right\}$ are partners in an irrep.
D_{3} Matrix Representation Summary
$\left.\begin{array}{l|cccccc} & r_{0} & r_{1} & r_{2} & s_{0} & s_{1} & s_{2} \\ \hline \hline \text { Identity } & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \text { Alternate } & 1 & 1 & 1 & -1 & -1 & -1 \\ \hline \text { Matrix } & (1) & 0 \\ & 0 & 1\end{array}\right)$
- Here $\mathbb{1}_{6 \times 6}$ is the 6×6 identity matrix. Some matrix representatives of the regular representation are

$$
D\left(r_{1}\right)=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \quad D\left(s_{0}\right)=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Partners in an irreducible rep

Partners in an irreducible rep

- The functions $f_{a b}^{(\mu)}$ are partners in a irreducable representation (μ). Take $b=1$ for example. Being partners means

$$
O_{y} f_{a b}^{(\mu)}=f_{c b}^{(\mu)}\left(D_{c a}^{(\mu)}(g)\right)^{*} \mid
$$

- What this means is that

$$
f_{11}^{(3 i)}
$$

can be transformed into $f_{21}^{(3)}$ by a linear combination of group operations. Indeed

$$
f_{21}^{(3)}=\frac{1}{2} O_{r_{1}} f_{11}^{(3)}-\frac{1}{2} O_{r_{2}} f_{11}^{(3)}
$$

Similarly $f_{21}^{(\mu)}$ can be transformed to $f_{11}^{(3)}$.

- But no amount of group transformations will change $f_{11}^{(1)}$ to $f_{11}^{(3)} \cdot\left(f_{11}^{(1)}\right.$ is totally symmetric)

Partners in the same irrep are mixed by the group operations

$f_{11}^{(3)}$

$$
f_{11}^{(3)}=\frac{1}{2}\left(-O_{r_{1}}+O_{r_{2}}\right) f_{21}^{(3)}
$$

$$
f_{21}^{(3)}
$$

$$
f_{21}^{(3)}=\frac{1}{2}\left(O_{r_{1}}-O_{r_{2}}\right) f_{11}^{(3)}
$$

- Proof that $f_{a b}^{(m)}$ are partners in an irrep:

$$
f_{a b}^{(\mu)}(x)=\frac{n}{\mu}_{n_{6}}^{g_{1}} D_{b a}^{(\mu)}\left(g_{1}^{-1}\right) \cdot O_{g_{1}} f
$$

So

$$
\begin{aligned}
O_{g} f_{a b}^{(\mu)}(x) & =\frac{n_{\mu}}{n_{G}} \sum_{g_{1}} D_{b a}^{(\mu)}\left(g_{1}^{-1}\right) O_{g} O_{g} f \\
& =\frac{n_{\mu}}{n_{G}} \sum_{g_{1}} D_{b a}^{(\alpha)}\left(g_{1}^{-1}\right) O_{g g_{1}} f
\end{aligned}
$$

- Now as g_{1} runs over the group so does $g g_{1}=g_{2}$

Define

$$
\begin{aligned}
& g_{2}=g_{1} \\
& g_{2}^{-1}=g_{1}^{-1} g^{-1} \\
& g_{2}^{-1} g=g_{1}^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
O_{\dot{g}} f_{a b}^{(\mu)}(x) & =\frac{n_{\mu}}{n_{6}} \sum_{g_{2}} D_{b a}^{(\mu)}\left(g_{2}^{-1} g\right) O_{g_{2} f} f \\
& =\frac{n_{\mu}}{n_{6}} \sum_{g_{2}} D_{b c}^{(\mu)}\left(g_{2}^{-1}\right) D_{c a}^{(\mu)}(g) O_{g_{2}} f(x) \\
& =\left(\frac{n_{\mu}}{n_{G}} \sum_{g_{2}} D_{b c}^{\left({ }_{c}\left(g_{2}^{-1}\right)\right.} O_{g_{2}} f\right) D_{c a}^{(\mu)}(g)
\end{aligned}
$$

$O_{g} f_{a b}^{\mu}=f_{c b}^{(\mu)} D_{(a)}^{(\mu)}(g)$

The Decomposition Into Elements of definite symmetry

- The operators $\hat{e}_{a b}^{(M)}$ form a complete basis for the group agebra $\hat{x}=\sum x_{i} \hat{g}_{i}$
- This means that any \hat{g}_{i} can be expressed as a linear combo of $\hat{e}_{a b}^{(\mu)}$. In particular

$$
\mathbb{I}=\sum_{\mu, a, b} c_{a b}^{(\mu)} \hat{e}_{a b}^{(\mu)} \quad \hat{e}_{a b}^{(\mu)} \equiv \frac{n_{\mu}}{n_{6}} \sum_{g}\left(D_{a b}^{(\mu)}(g)\right)^{*} \hat{g}
$$

Then since $\left\langle\hat{e}_{a b}^{(\mu)}, \hat{e}_{c d}^{(v)}\right\rangle=\frac{n_{\mu}}{n_{6}} \delta_{\mu v} \delta_{a c} \delta_{b d}$
we find

$$
\left\langle\hat{e}_{a b}^{(\mu)}, \mathbb{I}\right\rangle=c_{a b}^{(\mu)} n_{\mu} / n_{b}
$$

- Then for any "vector" $\hat{v}=\sum_{i} v_{i} \hat{g}_{i}$

$$
\hat{v}=\sum_{g} v(g) \hat{g}=\sum_{i} v\left(g_{i}\right) \hat{g}_{i}=\sum v_{i} \hat{g}_{i}
$$

We have
$\langle\mathbb{I}, \hat{v}\rangle=\hat{V}(\mathbb{I}) \leftarrow$ just the component of \hat{V} along II
$\langle\hat{v}, \mathbb{I}\rangle=V^{*}(\mathbb{1}) \leftarrow$ the complex conjugate

Thus

$$
C_{a b}^{(\mu)}=\frac{n_{G}}{\bar{n}_{\mu}}\left\langle\hat{e}_{a b}^{(\mu)}, \mathbb{1}\right\rangle=\bar{n}_{G}\left(\frac{n_{\mu}}{\bar{n}_{G}} D_{a b}^{(\mu)}(\mathbb{I})\right)
$$

$$
\begin{aligned}
& C_{a b}^{(\mu)}=D_{a b}^{(\mu)}(\mathbb{1}) \\
& C_{a b}^{(\mu)}=\delta_{a b}
\end{aligned}\left\{\begin{array}{l}
\text { The matrix of } \mathbb{I} \\
\text { is the identity matrix }
\end{array}\right.
$$

$$
\mathbb{I I}_{a b}^{(\mu)}=\delta_{a b}
$$

So

$$
\begin{aligned}
& I I=\sum_{\mu a, b} \delta_{a b} \hat{e}_{a b}^{(\mu)} \\
& I I=\sum_{\mu} \sum_{a} \hat{e}_{a a}^{(\mu)}
\end{aligned}
$$

Then we may decompose any function into components

$$
\begin{aligned}
f & =\mathbb{I} f \\
7 f & =\sum \sum_{\mu} \hat{e}_{a a}^{(\mu)} f=\sum_{\mu} \sum_{a a}^{(\mu)}
\end{aligned}
$$

- The $f^{(m)}$ aa transform as a row of an irreducible reppesentation.
This is portrayed graphically on the slide.

Projection theorem portrayed graphically

$$
f=\sum_{\mu, a} f_{a a}^{(\mu)}=f_{11}^{(1)}+f_{11}^{(2)}+f_{11}^{(3)}+f_{22}^{(3)}
$$

