Conjugacy Classes
A group element y is conjugate to x If there is a $g \in G$ such that

$$
y=g \times g^{-1}
$$

We write $y \sim x$

- Then this is an equivalence relation
- If $y \sim x$ the $x \sim y$
- If $z \sim y$ and $y \sim x$, then $z \sim x$

We can divide the group into conjugacy classes C, ie the set of elements conjugate to each other. Note

$$
\begin{aligned}
& C_{1}=\{\mathbb{1}\} \\
& C_{2}=\left\{\hat{r}_{1}, \hat{r}_{2}\right\} \text { rotations in a class } \\
& C_{3}=\left\{\hat{s}_{0}, \hat{s}_{1}, \hat{s}_{2}\right\} \leftarrow \text { reflection in a } \\
& \text { Class }
\end{aligned}
$$

egg.

$$
\hat{s}_{1}=\left(\hat{r}_{1}\right)^{-1} s_{0} \hat{r}_{1}
$$

Think about it pictorially

I can achieve an \hat{S}_{1} reflection by making a rotation, reflecting over \hat{s}_{0}, and reflecting' back

- The notation of conjugacy gives mathematical rigor to the intuitive notion that all reflections are similar somehow, and all rotations are similar somehow
- We will label the conjugacy classes as

$$
C_{I} \text { with } I=1 \ldots N_{\text {class }}
$$

- See previous page for C_{I} of D_{3}. The number of elements in each class is n_{I}

$$
n_{I=1}=1
$$

egg.
$n_{I=2}=2$ two elements in $C_{2}=\left\{\hat{r}_{1}, \hat{r}_{2}\right\}$

$$
n_{I=3}=3
$$

(the fact that $\mathrm{n} _\{1\}=1$ in this specific case, has no significance)

Character Analysis

- The character of a group rep $x(g)=\operatorname{Tr} D(g)$ is the same for each member of a conjugacy class, since if $y \sim z$

$$
\begin{aligned}
x(y) & =\operatorname{Tr} D(y) \\
& =\operatorname{Tr} D\left(g z g^{-1}\right) \\
& =\operatorname{Tr}\left[D(g) D(z) D^{-1}(g)\right] \\
& =\operatorname{Tr}\left[D^{-1}(g) D(g) D(z)\right]=\operatorname{Tr} D(z)
\end{aligned}
$$

- Thus we may list the characters of a group in a reduced table

$\mu=1$	Identity	$C_{1}(1)$	$C_{2}^{(2)}$	$C_{3}(3)$	$C_{I}\left(n_{I}\right)$
$\mu=2$	Alternating	1	1	1	the n_{I} is
$\mu=3$	Matrix	1	1	-1	of class
r_{0}	$r_{1} r_{2}$	$s_{0} s_{1} s_{2}$	elements		
1	2	-1	0		

For instance $\operatorname{Tr}_{r} D^{(3)}\left(r_{1}\right)=\operatorname{Tr}\left(\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ +\sqrt{3} / 2 & -1 / 2\end{array}\right)=-1$
see list of matrices

Character Orthogonality
Given the orthogonality theorem

$$
\sum_{g} D_{a b^{(g)}}^{(\mu)}\left(D_{c d}^{(\nu)}(g)\right)^{\star}=\frac{n_{c}}{n_{\mu}} \delta_{\mu \nu} \delta_{a c} \delta_{b d}
$$

We may contract $a b$ and $c d$

$$
\sum_{g} \sum_{a} \sum_{c} D_{a a}^{(\mu)}(g)\left(D_{c c}^{(v)}(g)\right)^{*}=\bar{n}_{\bar{n}_{\mu}} \delta_{\mu \nu} \overbrace{\sum_{a, c} \delta_{a c} \delta_{a c}}
$$

- Thus the characters of different reps are orthogonal

$$
\sum_{g} x^{(\mu)}(g)\left(x^{(\nu)}(g)\right)^{*}=n_{C} \delta_{\mu \nu}
$$

- But the character is only a function of the class (it is a so-called class function)

$$
\sum_{I=1}^{N_{c l o s s}} x^{(\mu)}\left(c_{ \pm}\right)\left(x^{(v)}\left(c_{I}\right)\right)^{*} n_{I}=n_{6} \delta_{\mu v}
$$

This is a kind of inner product in lass space, It says the rows are orthogonal

| | c_{1} | c_{2} | c_{3} | e.g. the first and second |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu=1$ | 1 | 1 | 1 | row the orthogonality is |
| $\mu=2$ | 1 | 1 | -1 | |
| $\mu=3$ | 2 | -1 | 0 | $1 \cdot 1+1 \cdot 1 \cdot 2+1 \cdot(-1) \cdot 3=0$ |

- The $x\left(C_{I}\right)$ are "vectors" \vec{x} in class space $\left\{c_{1}, c_{2}, c_{3}\right\}$ which has dimension $N_{\text {class }}=3$. For every $\operatorname{rep}_{\rightarrow(\mu)} \mu=1 \ldots$ Rep we get another orthogonal vector $\vec{x}^{(m)}$

We must have
(or the number of orthogonal vectors in the "class space" would exceed the dimension of the space)

$$
N_{\text {rep }} \leq N_{\text {class }}
$$

- In fact it turns out that $N_{\text {rep }}=N_{\text {class }}$, In words, the number of irreducibesentations is equal to the number of conjugacy classes.
- In fact the columns of the character table are orthogonal as well (summing over. reps)

$$
\sum_{\mu=1}^{N_{\text {rep }}} x^{(\mu)}\left(c_{I}\right)\left(x^{(\mu)}\left(c_{5}\right)\right)^{*}=\frac{n_{G}}{n_{I}} \delta_{I J}
$$

Thus contracting column 1 and 2

$$
1 \cdot 1+1 \cdot 1+2 \cdot(-1)=0
$$

Reduction of Representations

- Given a representation how can we tell if it is reducable?
the a_{μ} are integers

$$
\begin{aligned}
D(g) & =\sum_{\mu} \oplus a_{\mu} D^{(\mu)} e \cdot g . \\
& =2 D^{(1)} \oplus 3 D^{(2)}=
\end{aligned}
$$

Well $x(g)=\operatorname{Tr} D(g)$

$$
x(g)=\sum_{\mu} a_{\mu} x^{(\mu)}(g)
$$

orthogonal " $\vec{x}^{(\mu)} \cdot \vec{x}^{(\nu)} \propto \delta_{\mu \nu}$ "
Since for irreps, $\quad \sum_{g} x^{(\mu)}(g)\left(x^{(\nu)}(g)\right)^{*}=n_{G} \delta_{\mu \nu}$
So

$$
\sum_{g} x(g) x^{*}(g)=\left(\sum_{\mu}\left|a_{\mu}\right|^{2}\right) n_{G}>n_{G}
$$

- So we have a remarkably simple result: if a representation is irreducable, the sum of charcicters squared is the order of the group, else it is reducable.

Further we may

Find the a_{μ} by taking the dot product of $\vec{x}(g)$ with $x^{\mu}(g)$

$$
a_{\mu}=\frac{1}{n_{G}} \sum_{g} x(g)\left(x^{\mu}(g)\right)^{*}
$$

We will use this shortly

Small oscillations

The vector space of displacements is

$$
\vec{q}=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
x_{2} \\
y_{2} \\
x_{3} \\
y_{3}
\end{array}\right)=\left(q_{a} \vec{e}_{a} \quad \vec{e}_{1}, \vec{x}_{2}, \vec{x}_{3}\right) \quad\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Then cleorly if I have a configuration, \vec{q} then a rotated configuration will have the same kinetic and potential energies for any displacement. The lagrangian $\mathcal{L}[\vec{q}]$ is unchanged by group ops $\alpha\left[0_{r_{0}} \vec{q}\right]$ for any \vec{q}

Lets Loot at $\hat{\mathrm{O}}_{s_{0}} q$

$$
\hat{o}_{5} q=\left(\begin{array}{c}
x_{1} \\
-y_{1} \\
x_{3} \\
-y_{3} \\
x_{2} \\
-y_{2}
\end{array}\right)
$$

Then $\quad q_{a \rightarrow s_{0}} O_{a b} q^{b}$

Where
$D^{(3)}$) is the 2×2 matrix rep that describes how D_{3} acts on vectors. Thus the group operations involve the action of $D^{(3)}$ on the vectors together with a permutation of positions

- We may write down the other ops in a similar fashion, e.g.

$$
\begin{aligned}
O\left(r_{1}\right)=\left(\begin{array}{ccc}
0 & 0 & D \\
D & 0 & 0 \\
0 & D & 0
\end{array}\right) \text { where } D & =D^{(3)}\left(r_{1}\right) \\
& =\left(\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

$$
O(e)=\left(\begin{array}{lll}
D & 0 & 0 \\
0 & D & 0 \\
0 & 0 & D
\end{array}\right)
$$

where

- The complete list is in the slides. Already using $O(e), O\left(r_{1}\right), O\left(s_{0}\right)$ we can determine the character's

$$
\begin{array}{ccc}
c_{1} & c_{c_{2}}^{x(e)=6} & c_{3} \\
n_{1}=1 & n_{2}=1 & n_{1}=3
\end{array}
$$

- Them this rep is reducable

$$
\sum_{g}|x(g)|^{2}=6.6>36
$$

$$
\begin{array}{ll}
O_{\mathbb{1}}=\left(\begin{array}{lll}
D & 0 & 0 \\
0 & D & 0 \\
0 & 0 & D
\end{array}\right) & O_{r_{1}}=\left(\begin{array}{ccc}
0 & 0 & D \\
D & 0 & 0 \\
0 & D & 0
\end{array}\right) \\
O_{r_{2}}=\left(\begin{array}{ccc}
0 & D & 0 \\
0 & 0 & D \\
D & 0 & 0
\end{array}\right) \\
O_{s_{0}}=\left(\begin{array}{lll}
0 & 0 & D \\
D & 0 & 0 \\
0 & D & 0
\end{array}\right) & O_{s_{1}}=\left(\begin{array}{ccc}
D & 0 & 0 \\
0 & 0 & D \\
0 & D & 0
\end{array}\right)
\end{array}
$$

where D in $O_{s_{2}}$ for example is short for $D^{(3)}\left(s_{2}\right)$.

| | r_{0} | r_{1} | r_{2} |
| :---: | :---: | :---: | :---: |$s_{0} \quad s_{1} \quad s_{2}$

By a change of basis we may decompose

$$
(g) \rightarrow \underline{O}(g)=S^{-1} D(g) S
$$

As a direct sum of irreps

$$
\underline{O}(g)=\sum D^{(\mu)} a_{\mu}
$$

Then

$$
\begin{aligned}
& a_{\mu}=\frac{1}{n_{G}} \sum_{I} x\left(c_{I}\right)\left(x^{(m)}\left(c_{I}\right)\right)^{*} n_{I} \\
& a_{(1)}=\frac{1}{6} 6 \cdot 1=1 \\
& a_{(2)}=\frac{1}{6} 6 \cdot 1=1 \\
& a_{(3)}=\frac{1}{6} 6 \cdot 2=2
\end{aligned}
$$

So after a change of basis we must have

$$
\begin{aligned}
& \underline{D}(g)=D^{(1)} \oplus D^{(2)} \oplus 2 D^{(3)} \\
& \underline{D}=\left(\begin{array}{|l|l|l|l}
\mid \times 1 & & & \\
\hline & 1 \times 1 & & \\
\hline & & 2 \times 2 & \\
\hline & & & 2 \times 2
\end{array}\right)=6 \times 6 \text { matrix }
\end{aligned}
$$

it will be easier to analyze the small

Oscillations in this basis

The mechanicd problem

$$
T=\frac{1}{2} \sum_{a} m \dot{q}_{a}^{2}
$$

$$
\begin{aligned}
u & =u_{0}+\frac{1}{2} \frac{\partial^{2} u}{\partial q_{a} \partial q_{b}} q_{a} q_{b} \\
& =\frac{1}{2} q_{a} H_{a b} q_{b}+\text { const } \quad H_{a b} \equiv \frac{\partial^{2} u}{\partial q^{a} \partial q^{b}}
\end{aligned}
$$

Some notation $\stackrel{\rightharpoonup}{q} \equiv()$

- $\langle\vec{q}, \vec{q}\rangle \equiv \vec{q}^{\top} \vec{q}$

Then

$$
\langle\stackrel{\rightharpoonup}{q}, H \stackrel{\rightharpoonup}{q}\rangle \equiv \vec{q}^{\top} H \stackrel{\rightharpoonup}{q}
$$

- The mechanical problem is

$$
m \frac{d^{2} \stackrel{\rightharpoonup}{q}}{d t^{2}}+H \vec{q}=0
$$

- Our goal is to find the eigenvectors and evalues of H

$$
H \vec{\psi}_{\lambda}=k_{\lambda} \vec{\psi}_{\lambda}
$$

Then we may solve the EOM. For if

$$
\vec{q}=q_{\lambda} \vec{\psi}_{\lambda}
$$

Then

$$
m \frac{d^{2} q_{\lambda}}{d t^{2}}=-k_{\lambda} q_{\lambda} \quad q_{\lambda}(t)=q_{\lambda}(0) e^{ \pm i \omega_{\lambda} t}
$$

with $\quad \omega_{\lambda}=\sqrt{k_{\lambda} / m}$.
The eigenvectors of H are real and orthogonal.
Symmetry:

- Under the group ops $\quad \vec{q}=q_{a} \vec{e}_{a}$

$$
q_{a} \longrightarrow O_{b a}(g) q_{a} \quad \vec{q} \rightarrow O_{g} \vec{q}
$$

- The matrices O are orthogonal $O^{\top} O=\mathbb{1}$.

$$
\text { So }\left\langle O_{\vec{x}}, O_{y}\right\rangle=\left\langle\vec{x}, \text { ot }_{y}\right\rangle
$$

- The potential energy is unchanged by the group operations

$$
\langle O \vec{q}, H O \vec{q}\rangle=\vec{q}^{\top} O^{\top} H O \vec{q}=\langle\vec{q}, H \stackrel{\rightharpoonup}{q}\rangle
$$

So we must have

$$
\mathrm{O}^{\top} \mathrm{HO}=\mathrm{H} \quad \text { i.e } \quad O^{-1} \mathrm{HO}=\mathrm{H}
$$

or $\quad[H, O]=0$

How does this help us?

- Suppose that $\vec{\psi}$ is an eigen-function.

Then $\mathrm{O}_{g} \vec{\psi}$ is also an eigen-function with the same eigenvalue
commute

$$
\left\{\begin{array}{l}
O_{g} H \vec{\psi}=k O_{g} \vec{\psi} \\
H O_{g} \psi=k O_{g} \psi
\end{array}\right.
$$

So we get a set of functions

$$
\left\{\vec{\psi}, O_{r_{1}} \vec{\psi}, O_{r_{2}} \stackrel{\rightharpoonup}{\psi}, O_{s_{0}} \stackrel{\rightharpoonup}{\psi}, O_{s_{1}} \stackrel{\rightharpoonup}{\psi}, O_{s_{2}} \vec{\psi}\right\}
$$

These may not be distrinct. But farther group action will simply mix up these states

- There are a set of λ functions which have common, eigenvalue k_{λ}

$$
\left\{\psi_{1} \ldots \psi_{\lambda}\right\} \quad \begin{aligned}
& \text { (they span a space which is invariant } \\
& \text { under group operations) }
\end{aligned}
$$

Which span this space. Action by the group Returns a linear combo of these states

$$
O_{g} \vec{\psi}_{\lambda}=\vec{\psi}_{\lambda^{\prime}} D_{\lambda \lambda^{\prime}}(g)
$$

The $D_{\lambda \lambda^{\prime}}(g)$ is a representation of the group.

In the "normal" situation
$D_{\lambda \lambda}$

Will be an irreducable representation ${ }^{\wedge}$ of the group. The $\psi_{\lambda}^{(\mu)}$ are degenerate because of symmetry we can change $\psi_{1}^{(\mu)}$ to $\psi_{2}^{(\mu)}$ by group ops. (and the group ops commute with hamiltonian)

If the representation is reducable then we could decompose it into irreps and have a set $\left\{\psi_{a}^{\left(\mu_{1}\right)}, \psi_{a}^{\left(\mu_{2}\right)}\right\}$ all of which have the same eigenvalue. The degeneracy between $\left(\mu_{1}\right)$ firetions and $\left(\mu_{2}\right)$ functions would seem "accidental as there is no group op which connects the $\left(\mu_{1}\right)$ fans with the $\left(\mu_{2}\right)$ fans. Typically this indicates that there is a larger symmetry group which connects $\left(\mu_{1}\right)$ to $\left(\mu_{2}\right)$.
(though accidents can actually happen, and sometimes in nature two levels are close in value for no good reason)

