The Orthogonality Theorem and No Mixing

- We have noted that by change of basis we may block diagonize the group matrices

$$
\begin{aligned}
0 \rightarrow \underline{o}_{a b} & =S^{-1} O S \\
& =D^{(1)} \oplus D^{(2)} \oplus 2 D^{(3)}
\end{aligned}
$$

- This means that we may shift from our canonical basis to another basis, Where each of the elements of the new basis transform according to an irrep of the group. The advantage is that H (the hamiltonian or potential energy matrix) will be block diagonalized in this basis due to the following theorem:

Them Let H be a operator/matrix which commutes with the group operator Og .

- Let \langle,$\rangle denote a group invariant$ inner product. By this we mean for

$$
\langle\vec{x}, \vec{y}\rangle=\left\langle O_{g} \vec{x}, O_{g} \vec{y}\right\rangle=\left\langle\vec{x}, O_{g}^{+} O_{g} \vec{y}\right\rangle
$$

so ot $0_{g}=1$ should be unitary So a group invariant \langle,$\rangle implies O_{g}$ are unitary $O_{g}^{\dagger} Q_{g}=1$
Let $\vec{\phi}_{a}^{(N)}$ and $\vec{f}_{b}^{(\nu)}$ be two vectors transforming as a representation of G
i.e.

$$
\| \begin{array}{rll}
O_{g} \vec{\phi}_{a}^{(\mu)} & =\vec{\phi}_{c}^{(\mu)} D_{c a}^{(\mu)}(g) & \\
O_{g} \vec{f}_{b}^{(\nu)} & =\vec{f}_{d}^{(\nu)} D_{b d}^{(\nu)}(g) & \text { "typo" should read }(\ngtr \not 又) \\
& &
\end{array}
$$

- We say that $\vec{\phi}_{a}^{(\mu)}$ "blogs to the a-th row of the irreducable representation μ "
- Then the matrix elements

$$
\left\langle\vec{\phi}_{a}^{(\mu)}, H \vec{f}_{b}^{(v)}\right\rangle=h^{(\mu)} \delta_{a b} \delta_{\mu v}
$$

are diagonal in a, b and μ, ν and $h^{(\mu)}$ is independent of a (the row of the rep)

$$
h_{\mu}=\frac{1}{n_{\mu}} \sum_{c}\left\langle\stackrel{\rightharpoonup}{\phi}_{c}^{(\mu)}, H \vec{f}_{c}^{(v)}\right\rangle
$$

Proof

$$
\left\langle\vec{\phi}_{a}^{(\mu)}, H \vec{f}_{b}^{(\nu)}\right\rangle=\frac{1}{n_{G}} \sum_{g}\left\langle O_{g} \vec{\phi}_{a}^{(\mu)}, O_{g} H_{b}^{(v)}\right\rangle
$$

- So using the transformation rules (A) and (A) and the fact that $O_{g} H=H O_{g}$ yields

$$
\left\langle\phi_{a}^{(\mu)}, H \vec{f}_{b}^{(v)}\right\rangle=\frac{1}{n_{b}} \sum_{g}\left\langle\vec{\phi}_{c}^{(\mu)}, H \vec{f}_{d}^{(\nu)}\right\rangle\left(D_{c a}^{(\mu)}(g)\right)^{*}\left(D_{d b}^{(\nu)}(g)\right)
$$

Which by the orthogomailty theorem yields

$$
\begin{aligned}
\left\langle\stackrel{\phi}{\phi}_{a}^{(\mu)}, H \phi_{b}^{(\nu)}\right\rangle & =\left\langle\stackrel{\phi}{c}^{(\mu)}, H \vec{f}_{d}^{(\nu)}\right\rangle \frac{1}{r_{\mu}} \delta_{\mu \nu} \delta_{c d} \delta_{a b} \\
& =h^{(\mu)} \delta_{\mu \nu} \delta_{a b}
\end{aligned}
$$

So summing c the theorem follows.

- The full vector space decomposes as

$$
O_{g}=D^{(1)} \oplus D^{(2)} \oplus \underline{2} D^{(3)}
$$

So the "Hamiltonian" will take the form

In ia basis $\left\{\underline{\left\{\vec{\phi}_{1}^{(1)}\right\}}, \underline{\left\{\dot{\phi}_{1}^{(2)}\right\}}, \underline{\left\{\vec{\phi}_{1,1}^{(3)}, \vec{\phi}_{1,2}^{(3)}\right\}}\right.$

$$
\left.\left\{\vec{\phi}_{2,1}^{(3)}, \vec{\phi}_{2,2}^{(3)}\right\},\right\}
$$

where
$\vec{\phi}_{a, i}^{(\mu)}$ is basis transforming in the $a-t h$ row of the μ-th rep; and i is a discrete index because there are in general more than one such functions. In this example there are two such functions because $D^{(3)}$ appears twice in $E_{q} \$$

Vibrational Modes

This is a quick preview of the final answer. The six modes on the previous page will look like this. We also show to which repsentation, D, they belong.

Zero Modes

Constructing Vectors of Definite Symmetry
Given a basis $\vec{e}_{1}, \vec{e}_{2}, \ldots \vec{e}_{c}$
We can systematically construct vectors of definite symmetry. Take \vec{e}_{1}

$$
\vec{e}_{1}=(\hat{x}, \overrightarrow{0}, \overrightarrow{0})=(1,0,0,0,0,0)
$$

after we are done with \vec{e}_{1} we could start with \vec{e}_{2} etc.

- Then we have the projection operators

$$
\mathbb{I}=\sum_{\mu, a} \hat{e}_{a a}^{(\mu)} \quad \hat{e}_{a a}^{(\mu)}=\frac{n_{\mu}}{n_{c}} \sum_{g}\left(D_{a, a}^{(\mu)}(g)\right)^{k} \hat{O}_{g}
$$

Or.
these are the vectors

$$
\vec{e}_{1}=\sum_{\mu, a} \hat{e}_{a a}^{(\mu)} \vec{e}_{1}=\sum_{a, \mu} \vec{e}_{a a, 1}^{(\mu)} \text { of rep }(\mu) \text { generated } b_{y} \vec{e}_{1}
$$

- Take a look at the effect of $O_{g} \vec{e}_{1}$:
 under reflection \hat{S}_{2}

Then
(1) $\vec{e}_{11,1}^{(1)}=\frac{1}{6} \sum_{g} O_{g} \vec{e}_{1}$

$$
\vec{e}_{11,1}^{(1)}=\frac{2}{6}\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right) \equiv \vec{\psi}_{v}^{(1)}
$$

Where here and below we define the vectors

This must be an eigen-mode $\vec{e}_{11,1}^{(1)} \equiv \vec{\psi}^{(1)} v$ since there is only one vector. transforming as $\overline{D^{(1)}}$.
(2) $\vec{e}_{11,1}^{(2)}=\frac{1}{6}\left(\vec{e}_{1}+O_{\text {供 }} \vec{e}_{1}+O_{r_{2}} \vec{e}_{1}-O_{s_{0}} \vec{e}_{1}-O_{s_{1}}^{\vec{e}_{1}}-O_{s_{2}} \vec{e}_{1}\right)$
$=\overrightarrow{0}$ see picture on previous page
(3) Now

$$
\begin{aligned}
\vec{e}_{11,1}^{(3)} & =\frac{2}{6}\left(O_{1}^{1}-1 / 2 O_{r_{1}}-1 / 2 O_{r_{2}}+O_{s_{d}}-1 / 2 O_{s_{1}}-1 / 2 O_{s_{2}}\right) \vec{e}_{1} \\
& =\frac{4}{6}\left(\vec{n}_{1},-\frac{1}{2} \vec{n}_{2},-\frac{1}{2} \vec{n}_{3}\right) \quad \text { (see slides !) }
\end{aligned}
$$

See slides two pages forward
(4) $\vec{e}_{22,1}^{(3)}=\frac{2}{6}\left(O_{11}-\frac{1}{2} O_{r_{1}}-\frac{1}{2} O_{r_{2}}-O_{S_{0}}+\frac{1}{2} 0_{S_{1}}+\frac{1}{2} O_{S_{2}}\right) \vec{e}_{1}$

$$
=\stackrel{\rightharpoonup}{0}
$$

(Just thick about it graphichally)
see picture two pages back see picture two pages back
Associated by group ops with $\vec{e}_{11,1}^{(3)}$ and $\vec{e}_{22,1}^{(3)}$ are the vectors $\vec{e}_{21,1}^{(3)}$ and $\vec{e}_{(3)}^{(2,1}$. Indeed, we said that these vectors can be obtained by linear combos of group ops acting an $\vec{e}_{11,1}^{(3)}$ and $\vec{e}_{(3)}^{(3)}$. So, $\vec{e}_{12}^{(3)}=\overrightarrow{0}(3)$
$\vec{e}^{(3)}$ but $\vec{e}_{21,1}^{(3)}$ is the partner of $\vec{e}_{11,1}^{(3)}$

$$
\begin{aligned}
\vec{e}_{21,1}^{(3)} & =\frac{2}{6}\left(0+\frac{\sqrt{3}}{2} O_{r_{1}}-\frac{\sqrt{3}}{2} O_{r_{1}}+0+\frac{\sqrt{3}}{2} O_{S}-\frac{\sqrt{3}}{2} O_{S_{2}}\right) \vec{e}_{1} \\
& =\frac{4}{6}\left(0, \frac{\sqrt{3}}{2} \vec{n}_{1},-\frac{\sqrt{3}}{2} \vec{r}_{2}\right) \quad \text { (see slides!) }
\end{aligned}
$$

See slide one page forward
Summary: and associated partners $\vec{e}_{21}^{(3)}$

These are shown on the next page
We should no go on to $\vec{e}_{2} \ldots \vec{e}_{6}$ do the same thing. This procedure will produce a complete symmetry adapted basis

Three vectors in the space

Partners in the $D^{(3)}$ irreducible rep

The Potential energy matrix will take the form

- Since the is only one vector in $D^{(1)} \quad\left(D^{(1)}\right.$ appears once in the decomposition $O_{g}=D^{(1)} \oplus D^{(2)} \oplus 2 D^{(3)}$) we know that
$\vec{\psi}_{V}^{(1)} \equiv \vec{e}_{11,1}^{(1)}$ is an eigen-vector
- But $\left\{\begin{array}{lll}\vec{e}^{(3)} & \vec{e}_{21,1}^{(3)} \\ \frac{11,1}{} & \frac{21,1}{} \text { are just basis elements. We should }\end{array}\right.$
 will lie in the span of -2

$$
\left\{\vec{e}_{11,1}^{(3)}, \vec{\phi}_{1}^{(3)}\right\}
$$

$$
\text { for instance }\left\{\vec{e}_{12,2}^{(3)}, \vec{e}_{22,2}^{(3)}\right\}
$$ will work ${ }^{12,2}$

And another in the span of

$$
\left\{\underline{e_{21,1}^{(3)}, \vec{\phi}_{2}^{(3)}}\right\}
$$

In fact we know three cigen-vectors (zero modes) for free as we turn to next. But in general, one would need to diagonalize the 2×2 blocks to find the e-vects.

$$
\begin{aligned}
& b^{(1)} \\
& \text { The } 2 \times 2 \text { and } 2 \times 2 \text { are } \\
& H=\left(\begin{array}{cccc}
\left.\begin{array}{lll}
|x| & D^{(2)} & \\
& \boxed{1 \times 1} & \iota^{\text {first rows }} \\
& & D^{(3)} \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right)
\end{array}\right. \\
& \text { same, Why? } \\
& \text { second rowydod } D^{(3)} \text { ecg. } \\
& \left\{\hat{e}_{21}^{(3)}, \dot{\phi}_{2}^{(3)}\right\}
\end{aligned}
$$

Zero Modes

- If we shift the whole molecule to the right we do not change the energy Similarly for up and down

$$
\uparrow \uparrow \uparrow
$$

So the depicted vectors must be eigen-vectors

$$
=\vec{\psi}_{0 x}^{(3)}=(1,0,1,0,1,0) \quad \vec{\psi}_{0 y}^{(3)}=(0,1,0,1,0,1) \equiv \Uparrow
$$

They are also partners in a $D^{(3)}$ rep. Since if I rotate $\vec{\psi}$ ox by $2 \pi / 3$

$$
0_{r_{1}} \Rightarrow \quad \int_{0}=-\frac{1}{2} \Rightarrow+\frac{\sqrt{3}}{2} \Uparrow
$$

I get back a combo of $\vec{\psi}_{0 x}^{(3)}$ and $\vec{\psi}_{\mathrm{Oy}}^{(3)}$

- These are eigen-vectors. we should find the components of $\vec{e}_{11,1}^{(3)}$ and $\vec{e}_{21,3}^{(3)}$ which are orthogonal to these. This amounts to subtracting the center of mass motion of $\vec{e}_{11,1}^{(3)}$ and $\vec{e}_{21,1}^{(3)}$

Zero Mode Eigenvectors

$$
\stackrel{\rightharpoonup}{\psi}_{1 v}^{(3)}=\vec{e}_{11,1}^{(3)}-\frac{2}{6} \stackrel{\rightharpoonup}{\psi}_{o x}^{(3)}
$$

- chosen so ${ }_{4}{ }_{\text {IV }}$ has no center of mass motion in x-direction (see picture!)

On the next page

$$
\psi_{i v}=\frac{2}{6}\left((1,0),\left(-\frac{1}{2}, \frac{-\sqrt{3}}{2}\right),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\right)
$$

$$
\vec{\psi}_{z v}^{(3)}=\vec{e}_{21,1}^{(3)}-\frac{2}{6} \vec{\psi}_{0 y}^{(3)}
$$

2/6 chosen so no net y-vnotion (see pictrune!)

On the next page
Then $\vec{\psi}_{i v}^{(3)}, \vec{\psi}_{2 v}^{(3)}$ must be eigen vectors since it is a row of $D^{(3)}$ and orthogonal to $\vec{\psi}_{0 x}^{(3)} \psi_{0 y}^{(3)}$ eigenmode

- There is one more zero 1 mode, obtained by rotating the molecule $d s$ a whole. Under a small rotation around the z axis the equilibrium position is modified $\vec{r}_{0 i} \rightarrow \vec{r}_{0 i}+\delta \vec{\theta}_{0} \times \vec{r}_{0 i}$ (think $\delta \vec{r}_{0 i}=\vec{w} \times \vec{r}_{\text {of }} \delta t$). For rotations around z :

$$
\psi_{0 r}^{(2)} \propto\left(\delta \stackrel{r}{0}_{01}, \delta \vec{r}_{02}, \delta \vec{r}_{03}\right)
$$

where $\delta_{r_{O 1}}=(0,1)=\hat{y}$

See pict are on next page
(Actually it is one page back)

$$
\hat{y}=\hat{z} \times \hat{x}
$$

Subtracting Center of Mass Motion or Zero Modes

Where

see picture

- A rotation acting on $\psi_{O R}^{(2)}$ yields $\psi_{O R}^{(2)}$, i.e. $O_{r}, \vec{\psi}(2)=\vec{\psi}_{\text {or }}^{(2)}$ while a reflection yields - $\vec{\psi}_{\text {or }}^{(2)}$, i.e. $O_{S \Delta} \psi_{\sigma r}^{\prime}=-\psi_{o r}$. Thus $\vec{\psi}_{\text {or transforms }}$ as $D^{(2)}$.
- In fact it is easy to show that $\vec{\psi}_{\text {or }}^{(2)}=\hat{e}_{11}^{(2)} \cdot \vec{e}_{2}$

$$
\stackrel{\psi}{\psi}_{0 r}=\frac{1}{6}\left(O_{1}+O O_{r_{1}}+O O_{2}-O_{s_{0}}-O_{s_{1}}-O_{s_{2}}\right) \vec{e}_{2}
$$

Summary. See Picture
3 Vibrational Eigenmele: $\vec{\psi}_{V}^{(1)}, \vec{\psi}_{\mid v}^{(3)}, \vec{\psi}_{2 v}^{(3)}$
3 Zero Eigenmodes: $\quad \vec{\psi}_{0 r}^{(2)}, \vec{\psi}_{0 x}^{(3)}, \vec{\psi}_{0 y}$

Vibrational Modes

Zero Modes

