
Problem 1. Levi-civita practice

(a) Using the Levi-civitia tensor, show that for a constant field magnetic B field show that
the vector potential (B = ∇×A) can be written:

A = −1
2
r ×B (1)

(b) Show (using the Levi-civita symbol) and εijkε
ijk = 3! that

det(A) = det(AT ) (2)

and
det(AB) = det(A)det(B) (3)

(c) When differentiating 1/r we write

1

r
=

1√
xixi

(4)

with x = xiei, and use results like

∂ix
j = δji ∂ixj = δij ∂ix

i = δii = d = 3 (5)

where d = 3 is the number of spatial dimensions. (It is usually helps to write this as
d rather than 3 to get the algebra right). In this way, one finds that field due to an
electric point charge (monopole) is the familiar r̂/r2. Go through these steps!

j-th component of −∇(1/r) =

(
−∇1

r

)
j

= −∂j
1√
xixi

=
1
2
(xiδji + xiδ

i
j)

(xkxk)3/2
=
xj
r3

=
(n)j
r2

(6)
where r̂ ≡ n = r/r. In general

∂j r
α = α rα−1 nj . (7)

Using tensor notation (i.e. indexed notation) show that

∇× r̂

r2
= 0 (8)

This verifies that the ∇×E = 0 for a point charge.

(d) The vector potential of a magnetic dipole is

A =
m× n

4πr2
(9)

where m is a constant vector known as the magnetic dipole moment and n = r/r.
Recall that B = ∇×A. Using the tensor notation (i.e. indexed notation) show that

B =
3(n ·m)n−m

4πr3
(10)

1



Problem 2. Easy important application of Helmholtz theorems

(a) We showed in class that the source free Maxwell equations (i.e. those without ρ and
j), are solved by writing E and B in terms of a scalar field Φ (the scalar potential)
and a vector field A (the vector potential)

B =∇×A (11)

E =− 1

c
∂tA−∇Φ (12)

Now, using the sourced Maxwell equations (i.e. those with ρ and j), show that current
must obey the conservation Law

∂tρ+∇ · j = 0 , (13)

to be consistent with the Maxwell equations.

2



Problem 3. The multipole expansion and a rotating quadrupole

Consider a charge density ρ(x) as shown below. The potential is given by

φ(r) =

∫
d3x

ρ(x)

4π|r − x|
(14)

The multipole expansion determines the potential far from the charges, i.e. for r � x.

(a) Show that for r � x we have to quadratic order in x (or more formally xi/r) the
expansion

1

|r − x|
=

1√
r2 − 2r · x + x · x

' 1

r
+
rix

i

r3
+
rirj
2r4

(3xixj − x2 δij) + . . . (15)

where x2 = x · x = x`x
`, and we are using some power series expansions which all

physics students must know by heart but don’t always1.

Using this expansion, confirm for yourself (but do not bother turning in!) that the
potential far from a charge distribution takes the form

φ(r) =
1

4π

[
qtot
r

+
pini
r2

+
1

2

Qijninj
r3

+ . . .

]
(18)

Here ni = ri/r is unit vector in the direction of r, and the momopole, dipole, and
quadrupole moments, are respectively

qtot =

∫
V

d3x ρ(x) (19)

pi =

∫
V

d3x ρ(x)xi (20)

Qij =

∫
V

d3x ρ(x) (3xixj − x2δij) (21)

(b) Consider four point charges of charge +q,−q,+q,−q arranged in a square of side 2a
lying flat in the x, y plane. The square is rotating with constant angular velocity ω in
a counter clockwise fashion, and at time t = 0 is in the configuration shown below.

1

(1 + z)α '1 + αz +
α(α− 1)

2!
z2 + . . . (16)

log(1 + z) 'z − z2

2
+
z3

3
+ . . . (17)
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+ −

+−

ω

(i) Determine all components of the quadrupole tensor at t = 0.

(ii) In class we said that under rotations the components of the quadrupole tensor
transform as

Qij = Ri
`R

j
mQ`m (22)

Use this transformation rule to show that the components of the quadrupole tensor
as a function of time are given by

(Q)ij = 12qa2

− sin(2ωt) cos(2ωt) 0
cos(2ωt) sin(2ωt) 0

0 0 0

 (23)

Give a one (or at most two) sentence explanation whyQxx is negative when ωt = π
4

Next semester you may be asked to use this result to determine the power radiated
by such a rotating array of charges.
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Problem 4. Integration by Parts (IBP) like mad!

Answer briefly

(a) Assume φ and |G| fall faster than 1/r as r → ∞. Let F = ∇φ and ∇×G = 0, use
indices and IBP like mad to show that

∫
d3xF ×G = 0

(b) Consider a current density j entirely contained within a volume V . The current is
steady and therefore satsifies ∇ · j = 0. Show that2∫

V

d3x j`(x) = 0 (24)

(c) Consider a two dimensional surface S bounded by a loop C. Show that3∫
dSi =

1

2

∮
C

(r × d`)i (25)

Here the magnitude dS is the area of the infinitessimal surface element. dS points
normal to the surface.

(d) Let S be the surface that bounds a volume V . Show that∮
dSi = 0 (26)

and
1

3

∮
dS · r = V (27)

2Hint: write jiδ`i = ji∂ix
` and IBP like mad!

3Hint: use the results probelm 1(a) for the constant vector ei.
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