Problem 1. Levi-civita practice

(a) Using the Levi-civitia tensor, show that for a constant field magnetic \boldsymbol{B} field show that the vector potential $(\boldsymbol{B}=\nabla \times \boldsymbol{A})$ can be written:

$$
\begin{equation*}
\boldsymbol{A}=\frac{-1}{2} \boldsymbol{r} \times \boldsymbol{B} \tag{1}
\end{equation*}
$$

(b) Show (using the Levi-civita symbol) and $\epsilon_{i j k} \epsilon^{i j k}=3$! that

$$
\begin{equation*}
\operatorname{det}(\mathbb{A})=\operatorname{det}\left(\mathbb{A}^{T}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(\mathbb{A} \mathbb{B})=\operatorname{det}(\mathbb{A}) \operatorname{det}(\mathbb{B}) \tag{3}
\end{equation*}
$$

(c) When differentiating $1 / r$ we write

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{\sqrt{x^{i} x_{i}}} \tag{4}
\end{equation*}
$$

with $\boldsymbol{x}=x^{i} \boldsymbol{e}_{i}$, and use results like

$$
\begin{equation*}
\partial_{i} x^{j}=\delta_{i}^{j} \quad \partial_{i} x_{j}=\delta_{i j} \quad \partial_{i} x^{i}=\delta_{i}^{i}=d=3 \tag{5}
\end{equation*}
$$

where $d=3$ is the number of spatial dimensions. (It is usually helps to write this as d rather than 3 to get the algebra right). In this way, one finds that field due to an electric point charge (monopole) is the familiar $\hat{\boldsymbol{r}} / r^{2}$. Go through these steps!
j-th component of $-\nabla(1 / r)=\left(-\nabla \frac{1}{r}\right)_{j}=-\partial_{j} \frac{1}{\sqrt{x^{i} x_{i}}}=\frac{\frac{1}{2}\left(x^{i} \delta_{j i}+x_{i} \delta_{j}^{i}\right)}{\left(x^{k} x_{k}\right)^{3 / 2}}=\frac{x_{j}}{r^{3}}=\frac{(\boldsymbol{n})_{j}}{r^{2}}$
where $\hat{\boldsymbol{r}} \equiv \boldsymbol{n}=\boldsymbol{r} / r$. In general

$$
\begin{equation*}
\partial_{j} r^{\alpha}=\alpha r^{\alpha-1} n_{j} . \tag{7}
\end{equation*}
$$

Using tensor notation (i.e. indexed notation) show that

$$
\begin{equation*}
\nabla \times \frac{\hat{\boldsymbol{r}}}{r^{2}}=0 \tag{8}
\end{equation*}
$$

This verifies that the $\nabla \times \boldsymbol{E}=0$ for a point charge.
(d) The vector potential of a magnetic dipole is

$$
\begin{equation*}
\boldsymbol{A}=\frac{\boldsymbol{m} \times \boldsymbol{n}}{4 \pi r^{2}} \tag{9}
\end{equation*}
$$

where \boldsymbol{m} is a constant vector known as the magnetic dipole moment and $\boldsymbol{n}=\boldsymbol{r} / r$. Recall that $\boldsymbol{B}=\nabla \times \boldsymbol{A}$. Using the tensor notation (i.e. indexed notation) show that

$$
\begin{equation*}
\boldsymbol{B}=\frac{3(\boldsymbol{n} \cdot \boldsymbol{m}) \boldsymbol{n}-\boldsymbol{m}}{4 \pi r^{3}} \tag{10}
\end{equation*}
$$

Problem 2. Easy important application of Helmholtz theorems

(a) We showed in class that the source free Maxwell equations (i.e. those without ρ and \boldsymbol{j}), are solved by writing \boldsymbol{E} and \boldsymbol{B} in terms of a scalar field Φ (the scalar potential) and a vector field \boldsymbol{A} (the vector potential)

$$
\begin{align*}
\boldsymbol{B} & =\nabla \times \boldsymbol{A} \tag{11}\\
\boldsymbol{E} & =-\frac{1}{c} \partial_{t} \boldsymbol{A}-\nabla \Phi \tag{12}
\end{align*}
$$

Now, using the sourced Maxwell equations (i.e. those with ρ and \boldsymbol{j}), show that current must obey the conservation Law

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0 \tag{13}
\end{equation*}
$$

to be consistent with the Maxwell equations.

Problem 3. The multipole expansion and a rotating quadrupole

Consider a charge density $\rho(\boldsymbol{x})$ as shown below. The potential is given by

$$
\begin{equation*}
\phi(\boldsymbol{r})=\int d^{3} \boldsymbol{x} \frac{\rho(\boldsymbol{x})}{4 \pi|\boldsymbol{r}-\boldsymbol{x}|} \tag{14}
\end{equation*}
$$

The multipole expansion determines the potential far from the charges, i.e. for $\boldsymbol{r} \gg \boldsymbol{x}$.
(a) Show that for $\boldsymbol{r} \gg \boldsymbol{x}$ we have to quadratic order in \boldsymbol{x} (or more formally x^{i} / r) the expansion

$$
\begin{equation*}
\frac{1}{|\boldsymbol{r}-\boldsymbol{x}|}=\frac{1}{\sqrt{r^{2}-2 \boldsymbol{r} \cdot \boldsymbol{x}+\boldsymbol{x} \cdot \boldsymbol{x}}} \simeq \frac{1}{r}+\frac{r_{i} x^{i}}{r^{3}}+\frac{r_{i} r_{j}}{2 r^{4}}\left(3 x^{i} x^{j}-x^{2} \delta^{i j}\right)+\ldots \tag{15}
\end{equation*}
$$

where $x^{2}=\boldsymbol{x} \cdot \boldsymbol{x}=x_{\ell} x^{\ell}$, and we are using some power series expansions which all physics students must know by heart but don't always ${ }^{1}$.
Using this expansion, confirm for yourself (but do not bother turning in!) that the potential far from a charge distribution takes the form

$$
\begin{equation*}
\phi(\boldsymbol{r})=\frac{1}{4 \pi}\left[\frac{q_{\mathrm{tot}}}{r}+\frac{p^{i} n_{i}}{r^{2}}+\frac{1}{2} \frac{\mathcal{Q}^{i j} n_{i} n_{j}}{r^{3}}+\ldots\right] \tag{18}
\end{equation*}
$$

Here $n_{i}=r_{i} / r$ is unit vector in the direction of \boldsymbol{r}, and the momopole, dipole, and quadrupole moments, are respectively

$$
\begin{align*}
q_{\mathrm{tot}} & =\int_{V} d^{3} \boldsymbol{x} \rho(\boldsymbol{x}) \tag{19}\\
p^{i} & =\int_{V} d^{3} \boldsymbol{x} \rho(\boldsymbol{x}) x^{i} \tag{20}\\
\mathcal{Q}^{i j} & =\int_{V} d^{3} \boldsymbol{x} \rho(\boldsymbol{x})\left(3 x^{i} x^{j}-x^{2} \delta^{i j}\right) \tag{21}
\end{align*}
$$

(b) Consider four point charges of charge $+q,-q,+q,-q$ arranged in a square of side $2 a$ lying flat in the x, y plane. The square is rotating with constant angular velocity ω in a counter clockwise fashion, and at time $t=0$ is in the configuration shown below.

$$
\begin{align*}
& \qquad \begin{aligned}
(1+z)^{\alpha} & \simeq 1+\alpha z+\frac{\alpha(\alpha-1)}{2!} z^{2}+\ldots \\
\log (1+z) & \simeq z-\frac{z^{2}}{2}+\frac{z^{3}}{3}+\ldots
\end{aligned}
\end{align*}
$$

(i) Determine all components of the quadrupole tensor at $t=0$.
(ii) In class we said that under rotations the components of the quadrupole tensor transform as

$$
\begin{equation*}
\underline{\mathcal{Q}}^{i j}=R_{\ell}^{i} R_{m}^{j} \mathcal{Q}^{\ell m} \tag{22}
\end{equation*}
$$

Use this transformation rule to show that the components of the quadrupole tensor as a function of time are given by

$$
(\mathcal{Q})^{i j}=12 q a^{2}\left(\begin{array}{ccc}
-\sin (2 \omega t) & \cos (2 \omega t) & 0 \tag{23}\\
\cos (2 \omega t) & \sin (2 \omega t) & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Give a one (or at most two) sentence explanation why $\mathcal{Q}^{x x}$ is negative when $\omega t=\frac{\pi}{4}$ Next semester you may be asked to use this result to determine the power radiated by such a rotating array of charges.

Problem 4. Integration by Parts (IBP) like mad!

Answer briefly
(a) Assume ϕ and $|\boldsymbol{G}|$ fall faster than $1 / r$ as $\boldsymbol{r} \rightarrow \infty$. Let $\boldsymbol{F}=\nabla \phi$ and $\nabla \times \boldsymbol{G}=0$, use indices and IBP like mad to show that $\int \mathrm{d}^{3} x \boldsymbol{F} \times \boldsymbol{G}=0$
(b) Consider a current density \boldsymbol{j} entirely contained within a volume V. The current is steady and therefore satsifies $\nabla \cdot \boldsymbol{j}=0$. Show that ${ }^{2}$

$$
\begin{equation*}
\int_{V} d^{3} \boldsymbol{x} j^{\ell}(\boldsymbol{x})=0 \tag{24}
\end{equation*}
$$

(c) Consider a two dimensional surface S bounded by a loop C. Show that ${ }^{3}$

$$
\begin{equation*}
\int d S_{i}=\frac{1}{2} \oint_{C}(\boldsymbol{r} \times \mathrm{d} \boldsymbol{\ell})_{i} \tag{25}
\end{equation*}
$$

Here the magnitude $\mathrm{d} \boldsymbol{S}$ is the area of the infinitessimal surface element. $\mathrm{d} \boldsymbol{S}$ points normal to the surface.
(d) Let S be the surface that bounds a volume V. Show that

$$
\begin{equation*}
\oint d S_{i}=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{3} \oint \mathrm{~d} \boldsymbol{S} \cdot \boldsymbol{r}=V \tag{27}
\end{equation*}
$$

[^0]
[^0]: ${ }^{2}$ Hint: write $j^{i} \delta_{i}^{\ell}=j^{i} \partial_{i} x^{\ell}$ and IBP like mad!
 ${ }^{3}$ Hint: use the results probelm 1(a) for the constant vector \boldsymbol{e}_{i}.

